Machine Learning
magic_andy
这个作者很懒,什么都没留下…
展开
-
Restricted Boltzmann Machine 受玻尔兹曼机与DBM深度信念网络
声明:本文是阅读别人文章的基础上的自己理解。文中有些部分直接以图片拷贝形式。强烈建议读者读读参考文献【1】一、受限玻尔兹曼机RBM1、概念受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)一种生成式随机神经网络(generative stochastic neural network),该网络是一个二部图,一层是可视层,即输入数据原创 2015-04-08 20:12:11 · 7994 阅读 · 1 评论 -
chapter2 How the backpropagation algorithm works
反馈算法是如何工作的?(主要章节)1.矩阵(或向量)表示2.代价函数的两个假设:(1)代价函数可写成所有单个训练样本x产生代价的平均;(2)可写成神经网络的输出函数3.阿达码乘积Hadamard product: 向量对应元素相乘4.反馈算法的四个基本等式:5. 问题:Alternate presentation of the equations of backprop翻译 2015-10-12 15:11:04 · 627 阅读 · 0 评论 -
记录安装使用python(一)
一直看到Python广泛用在机器学习。知乎上 对Python讨论的也比较多。今天开启学习python之路(有点不务正业的感觉)第一步:安装参照网上教程,安装python2.7 + ulipad 失败挫折过程:1)python 3.3先被安装,选择了“自动配置环境”。然后命令行里: python ...还是提示 非法命令。又不甘心,自己又配置了python,添加原创 2015-07-02 21:55:00 · 531 阅读 · 0 评论 -
python中使用中文
参考博文地址:http://www.cnblogs.com/rollenholt/archive/2011/08/01/2123889.htmlpython的中文问题一直是困扰新手的头疼问题,这篇文章将给你详细地讲解一下这方面的知识。当然,几乎可以确定的是,在将来的版本中,python会彻底解决此问题,不用我们这么麻烦了。先来看看python的版本:>>> impo转载 2015-07-03 09:15:30 · 456 阅读 · 0 评论 -
cvpr2015论文列表网址
http://www.pamitc.org/cvpr15/program.php原创 2015-05-25 13:44:32 · 2185 阅读 · 0 评论 -
R. Wang-Manifold-Manifold Distance with Application to Face Recognition based on Image Set读后记
题目:Manifold-Manifold Distance with Application to Face Recognition based on Image Set作者:Ruiping Wang 1, 2, 3 , Shiguang Shan 1, 2 , Xilin Chen 1, 2 , Wen Gao 4, 主要思想:利用流形集合 与 流形集合的距离计算方法,识别人脸数据集。原创 2015-07-01 21:10:58 · 758 阅读 · 0 评论 -
M.Goffredo -Self-Calibrating View-Invariant Gait Biometrics读后记
题目:Self-Calibrating View-Invariant Gait Biometrics作者:Michela Goffredo, Member, IEEE, Imed Bouchrika, Member, IEEE, John N. Carter, Member, IEEE, and Mark S. Nixon, Associate Member, IEEE期刊:IEEE TR原创 2015-06-28 13:25:41 · 823 阅读 · 1 评论 -
CV&DL&ML等资源整理
原文地址:http://www.cnblogs.com/tornadomeet Deep Learning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是转载 2015-04-09 15:34:17 · 1332 阅读 · 0 评论 -
CHAPTER 3 改进神经网络的学习(Improving the way neural networks learn)
几个方面改进工作:(一)改变代价函数,或输出函数,使用cross-entropy作为代价函数(二)四种规格化方法 regularization(L1 and L2 regularization, dropout, and artificial expansion of the training data)(三)更好的神经网络权值w初始化方法(四)一系列启发式参数选择方法翻译 2015-10-13 13:44:22 · 833 阅读 · 0 评论