关于对leetcode53最大子序和的思考

本文探讨了如何解决LeetCode上的第53题,即寻找一个整数数组的最大子序列和。通过举例说明,提出穷举法、动态规划以及分治策略等解题方法,并分析了它们的时间复杂度。
摘要由CSDN通过智能技术生成

关于对leetcode53最大子序和的思考

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0

示例 4:

输入:nums = [-1]
输出:-1

示例 5:

输入:nums = [-100000]
输出:-100000
提示:
  • 1 <= nums.length <= 3 * 104
  • -105 <= nums[i] <= 105
  • **进阶:**如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

法一:穷举法:数组循环,暴力求解

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function(nums) {
var n =nums.length;
var max=nums[0];
for (var i = 0; i < n; i++) {
    for (var j = i; j < n; j++) {
        var t = 0;
        for (var k = i; k <= j; k++){
            t+=nums[k];
                if(t>max){
                max=t;
                }
            }
		}
        
}
return max;
};

这种穷举法需要用到三重循环,故时间复杂度为O(n3),穷举法还可进行如下优化,使得时间复杂度优化为两重循环的O(n2)

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function(nums) {
var max=nums[0];
var n =nums.length;
for (var i = 0; i < n; i++) {
var t = 0;
    for (var j = i; j < n; j++) {
            t+=nums[j];
                if(t>max){
                max=t;
                }	
            }
		
}
return max;
};

法二:动态规划
在这里插入图片描述

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function(nums) {
    var count = new Array();
var n =nums.length;
count[0]=nums[0];

var max=count[0];
for (var i = 1; i < n; i++) {
        if(count[i-1]>0){
        count[i]=count[i-1]+nums[i];
        }else{
            count[i]=nums[i];
        }
        if( count[i]>max){
		max = count[i]
}
}
return max;
};

此解法的时间复杂度为O(n),如需求解最大子序和的起始下标和终点下标,则可用max值从i的位置依次向前作减法,直到值等于0即为起始值。

法三:分之策略,递归求解

/**
 * @param {number[]} nums
 * @param {number} left
 * @param {number} right
 * @param {number} mid
 * @return {number}
 */
function crossSum(nums, left, right, mid) {
    if (left === right) {
        return nums[left];
    }

    let leftMaxSum = Number.MIN_SAFE_INTEGER;
    let leftSum = 0;
    for (let i = mid; i >= left; --i) {
        leftSum += nums[i];
        leftMaxSum = Math.max(leftMaxSum, leftSum);
    }

    let rightMaxSum = Number.MIN_SAFE_INTEGER;
    let rightSum = 0;
    for (let i = mid + 1; i <= right; ++i) {
        rightSum += nums[i];
        rightMaxSum = Math.max(rightMaxSum, rightSum);
    }

    return leftMaxSum + rightMaxSum;
}

/**
 * @param {number[]} nums
 * @param {number} left
 * @param {number} right
 * @return {number}
 */
function __maxSubArray(nums, left, right) {
    if (left === right) {
        return nums[left];
    }

    const mid = Math.floor((left + right) / 2);
    const lsum = __maxSubArray(nums, left, mid);
    const rsum = __maxSubArray(nums, mid + 1, right);
    const cross = crossSum(nums, left, right, mid);

    return Math.max(lsum, rsum, cross);
}

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function(nums) {
    return __maxSubArray(nums, 0, nums.length - 1);
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值