01背包问题
01背包问题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
二维dp,dp[i][j]表示从前i个物品中挑选总体积小于j的物品的最大价值
递推公式:分两种情况讨论
第一种:不选择第i种物品 此时dp[i][j] = dp[i - 1][j]
第二种:如果加上第i种物品总体积小于j的话 dp[i][j] = max(dp[i -1][j],dp[i - 1][j - v[i] + w[i])
二维模板代码:
#include<bits/stdc++.h>
using namespace std;
int dp[1010][1010];
int n,V;
int v[1010],w[1010];
int main()
{
cin>>n>>V;
for(int i = 1; i <= n; i ++ )
cin>>v[i]>>w[i];
for(int i = 1; i <= n; i ++ )
{
for(int j = 0; j <= V; j ++ )
{
dp[i][j] = dp[i - 1][j];
if(j >= v[i])
dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
}
}
cout<<dp[n][V];
return 0;
}
01背包滚动数组空间优化
先看关键代码对比(下面是原二维代码)
for(int i = 1; i <= n; i ++ )
{
for(int j = 0; j <= V; j ++ )
{
dp[j] = dp[j];
/*dp[i][j]= dp[i - 1][j];*/
if(j >= v[i])
dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
/*dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);*/
}
}
第一句 dp[j] = dp[j] 由于会先算右边的dp[j],即右边的dp[j]是已存在的,所以应该等于第 i - 1 层的 dp[j] ,改为一维后不影响。
第二句 dp[j] = max(dp[j],dp[j - v[i]] + w[i]),由于j是从小到大遍历,而 j - v[i] 小于 j ,所以 dp[j - v[i]]是已被更新过的,即等于第 i 层的dp[ j - v[i]],与二维的不相等。
修改:想要是没被更新的上一层dp,只需将j的遍历顺序反过来即可。
修改后的一维代码
#include<bits/stdc++.h>
using namespace std;
int dp[1010];
int n,V;
int v[1010],w[1010];
int main()
{
cin>>n>>V;
for(int i = 1; i <= n; i ++ )
cin>>v[i]>>w[i];
for(int i = 1; i <= n; i ++ )
for(int j = V; j >= v[i]; j -- )
dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
cout<<dp[V];
}
为什么可以直接将dp[j] = dp[j]删去,因为改为了一维数组,在二维数组中不选择第i个物品时第i行的元素需要等于i-1行,而一维数组是滚动的,不选择时第i-1行的元素直接在第i行使用。
完全背包问题
完全背包问题
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
模板代码:
#include<bits/stdc++.h>
using namespace std;
int dp[1010][1010];
int n,V;
int v[1010],w[1010];
int main()
{
cin>>n>>V;
for(int i = 1; i <= n; i ++ )
cin>>v[i]>>w[i];
for(int i = 1; i <= n; i ++ )
{
for(int j = 0; j <= V; j ++ )
{
dp[i][j] = dp[i - 1][j];
if(j >= v[i])
dp[i][j] = max(dp[i - 1][j],dp[i][j - v[i]] + w[i]);
}
}
cout<<dp[n][V];
return 0;
}
与01背包问题唯一的差别就是第二句dp里的 i - 1 改为了 i 。
原因:
递推式:dp[i][j] =max(dp[ i - 1][j],dp[ i - 1 ][ j - v ] + w , dp[ i - 1 ][ j - 2 * v ] + 2 * w …)
同理,dp[ i ][ j - v ] = max(dp[ i - 1 ][ j - v ] , dp[ i - 1 ][ j - 2 * v ] + w …)
第一个式子的后半部分可以总结为 dp[ i ][ j - v ] + w,即得到完全背包的递推关系式。
完全背包的一维数组优化
同上关键代码对比
for(int i = 1; i <= n; i ++ )
{
for(int j = 0; j <= V; j ++ )
{
//dp[i][j] = dp[i - 1][j];
dp[j] = dp[j];
if(j >= v[i])
//dp[i][j] = max(dp[i - 1][j],dp[i][j - v[i]] + w[i]);
dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
}
}
由于只改变了 i 一处地方,只需看 dp[j - v[i]] + w[i])是否与dp[i][j - v[i]] + w[i])相同,通过01背包一维数组的分析可得,当j从0到V顺序遍历时,更新的值是最新的第i层的值,所以两式相等。
修改后的一维代码
#include<bits/stdc++.h>
using namespace std;
int dp[1010];
int n,V;
int v[1010],w[1010];
int main()
{
cin>>n>>V;
for(int i = 1; i <= n; i ++ )
cin>>v[i]>>w[i];
for(int i = 1; i <= n; i ++ )
for(int j = v[i]; j <= V; j ++ )
dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
cout<<dp[V];
return 0;
}