给定一个长度为 n 的数列 a1,a2,…,an,每次可以选择一个区间 [l,r],使下标在这个区间内的数都加一或者都减一。
求至少需要多少次操作才能使数列中的所有数都一样,并求出在保证最少次数的前提下,最终得到的数列可能有多少种。
输入格式
第一行输入正整数 n。
接下来 n 行,每行输入一个整数,第 i+1 行的整数代表 ai。
输出格式
第一行输出最少操作次数。
第二行输出最终能得到多少种结果。
数据范围
0<n≤105,
0≤ai<2147483648
输入样例:
4
1
1
2
2
输出样例:
1
2
题意:给定一个数组,你可以实行该数组区间+1和区间-1两个操作,问使得该数组每个数都相等的最小操作数以及最终得到数列的种类。
由于最终结果数组全为相同的数,这个数列的的差分数组一定为x 0 0 0 0 …(x >= 0),区间加一和区间减一在差分数组中的操作为某个数加一另一个数减一或者只是单个数加一或减一(这代表从那个数开始到数列最后都加一或减一),所以题目转化为将给定数组的差分数组转化为x 0 0 0 的形式的最小操作数。
由于要求的是最小操作数,根据贪心的思想肯定先将一个数加一另一个数减一的操作直到差分数列中除第一个外的非零元素全为正数或者全为负数,再对其进行单个数加一减一操作。所以最小操作数 = min(正数之和,负数之和的绝对值) + abs(正数之和 + abs(负数之和)).
数列的种类 = x的数量,只有第二种操作可以影响到x的大小,当元素为正时,可以该x + 1,该元素减一,为负时,x + 1,该元素加一,所以数列的种类等于差分数列全正或全负时相加的绝对值。而无论该元素的正负,都可以执行仅仅将该元素加一或者减一的操作,所以还要加上一种x不变的种类。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100010;
int a[N],b[N];
int n;
int main()
{
cin>>n;
for(int i = 1; i <= n; i ++ )
{
cin>>a[i];
b[i] = a[i] - a[i - 1];
}
ll res = 0,unres = 0,maxx,ans;
for(int i = 2 ; i <= n ; i ++ )
{
if(b[i] >= 0)
res += b[i];//正数之和
else
unres -= b[i];//负数之和绝对值
}
maxx = max(res,unres);// a + b
ans = abs(res - unres);// a
cout<<maxx<<endl<<ans + 1;
return 0;
}