自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 Python 使用字节流读取图片并转换成图片格式显示

Python 使用字节流读取图片并转换成图片格式显示 auth = HTTPBasicAuth("admin".encode('utf-8'), "12345") response = requests.post("http...

2020-06-15 00:22:17 274 0

原创 Python中将字节流文件转换成图片文件

Python中将字节流文件转换成图片文件 import urllib3 import os #PIL图像处理标准库 from PIL import Image from io import BytesIO http = urllib3.PoolManager() response = htt...

2020-06-15 00:02:36 170 0

原创 Python OpenCV 多边形拟合相关案例

本文整理总结基本图像处理方面的凸多边形拟合相关方法,可以实现物体边缘的平滑、规整化处理。 以上处理算法的实质是对物体边缘点进行减少或增加的过程,增加时可以实现边缘的规整化,减少时可以让曲线看上去更加平滑些。 1、Skimage实现图像边缘规整化处理 import matplotlib.py...

2020-03-06 16:03:55 444 0

原创 定制Python解释器进行源码保护

参考地址:https://www.cnblogs.com/dhcn/p/11077447.html 0 前言 考虑前文所述的几个方案,均是从源码的加工入手,或多或少都有些不足。假设我们从解释器的改造入手,会不会能够更好的保护代码呢? 由于发行商业 Python 程序到客户环境时通常会包含一个...

2020-01-16 17:36:49 126 0

原创 Python常见的几种代码加密方法

参考地址:https://www.cnblogs.com/dhcn/p/11077447.html 0 前言 去年11月在PyCon China 2018 杭州站分享了Python 源码加密,讲述了如何通过修改 Python 解释器达到加解密 Python 代码的目的。然而因为笔者拖延症发作,...

2020-01-16 17:35:03 195 0

原创 matplotlib平滑曲线绘制

1、问题概述 在平常的绘图任务中,常常会遇到绘制折现图的情况;但是有时候为了美观或者大致了解数据的波动情况,就需要将已有的折线图修改成更加平滑的曲线。为了解决上述问题,我们首先从原理角度来介绍折现图转曲线图的相关理论。折现转曲线无非就是在已有折现图的数据基础上在各折现数据中间填充更多的样本点,这...

2019-12-27 17:33:47 437 0

原创 matplotlib中解决中文显示、负号显示问题

import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] #显示中文 plt.rcParams['axes.unicode_minus']=F...

2019-07-26 16:35:18 734 0

原创 遗传算法概括

遗传算法解析: 遗传算法为最优化算法,可以解决单目标、多目标、帕雷托等问题。 遗传算法流程: 1、编码 选取特定编码方式对个体基因型编码。 2、初始化种群 随机生成n个个体组成的种群 3、计算适应度 选取适应度函数(一般为目标函数),求种群中个体的适应度值 ...

2019-07-19 16:09:28 108 0

原创 将Dataframe中的所有0值替换成NaN

将Dataframe中的所有0值替换成NaN df.replace(0,np.nan)

2019-07-16 12:19:24 8287 0

原创 Python不显示科学计数法,完整显示数字

python中numpy格式数据,不显示科学计数法,完整显示数字。 import numpy as np np.set_printoptions(suppress=True)

2019-07-12 10:59:47 6257 0

原创 matplotlib画3D图

from mpl_toolkits.mplot3d.axes3d import Axes3D fig = plt.figure() axes3d = Axes3D(fig) axes3d.scatter3D(x,y,np.log(x+y)) plt.show()

2019-07-09 11:54:11 187 0

原创 numpy取最大的n个数字的下标,取最大值的下标

1、numpy取最大值的下标 import numpy as np a = np.array([[2, 4, 6, 1], [1, 5, 2, 9]]) print(np.argmax(a)) print(np.argmax(a, axis=0)) #竖着比较,返回行号 print(np.a...

2019-07-03 10:14:27 6047 0

原创 Oracle大数据量读取:LOB variable no longer valid after subsequent fetch

Stack Overflow解决方案: cx_Oracle版本问题,在cx_Oracle5版本上有部分限制,在cx_Oracle6版本上没有此项限制。 This is a limitation of versions of cx_Oracle 5 and earlier. The new ve...

2019-05-29 17:56:33 237 0

原创 机器学习实战:出现session未清空的错误,需要清空TensorFlow的session,并重置图模型

出现session未清空的错误,需要清空TensorFlow的session,并重置图模型 import tensorflow as tf from keras import backend as K K.clear_session() tf.reset_default_graph() ...

2019-05-22 13:28:30 1773 0

原创 Python中os.system函数状态码详解

如果执行成功,那么会返回0,表示命令执行成功。 否则,则是执行错误,有以下几种错误分类: "OS error code1:Operation not permitted" "OS error code2:No such file or directory"...

2019-05-10 12:31:01 989 0

原创 Python中调用其他执行代码

os.system() 和 os.popen() 1.os.popen(command[,mode[,bufsize]]) os.system(command) 2.os.popen() 功能强于os.system() , os.popen() 可以返回回显的内容,以文件描述符返回。 eg: t...

2019-05-10 11:49:49 71 0

原创 Python中preprocessing.StandardScaler()在线标准化方法案例

Python中preprocessing.StandardScaler()在线标准化方法案例 import numpy as np from sklearn import preprocessing import utils data = utils.read...

2019-05-09 16:59:58 2767 0

原创 Python实现两个字符串日期月份的统计

Python实现两个字符串日期月份的统计 代码 # 接收两个字符串类型的日期类型,返回月份差值 def getStringSubDateMonth(dateStr1, dateStr2): year1 = datetime.datetime.strptime(dateStr1, &q...

2019-05-09 15:48:26 440 0

原创 Python代码实现相对误差公式计算

Python代码实现相对误差公式计算 代码: # 相对误差 def mean_relative_error(y_true, y_pred,): import numpy as np relative_error = np.average(np.abs(y_true - y_p...

2019-05-09 15:47:19 3271 2

原创 Python中list转成Json字符串

代码: # list 转成Json格式数据 def listToJson(lst): import json import numpy as np keys = [str(x) for x in np.arange(len(lst))] list_json = ...

2019-04-25 10:01:12 12995 0

原创 变分自编码器VAE代码篇

VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴; VAE的工作原理: (1)一个编码器模块将输入样本input_img转换为表示潜在空间中的两个参数z_mean和z_log_variance; (2)我们假定潜在正态分布能够生成输入图像,并从这个分布中随机...

2019-03-22 16:44:34 474 0

原创 深度生成模型——自省变分自编码器IntroVAE

近日,中国科学院自动化研究所智能感知与计算研究中心提出一种新的深度生成模型——自省变分自编码器(Introspective Variational Autoencoder,IntroVAE),用来实现高清图像等高维数据的无条件生成(unconditional generation)。该模型一方面在...

2019-03-22 13:33:02 684 0

原创 变分自编码器VAE详细解读

过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。趁着最近看概率图模型的三分钟热度,我决定也争取把 VAE 搞懂。 于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看...

2019-03-21 17:46:36 375 0

原创 VAE:变分自动编码器解析

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes."arXiv preprint arXiv:1312.6114(2013). 论文的理论推导见:https://zhuanlan.zh...

2019-03-21 17:44:19 256 0

原创 机器学习实战篇:Python爬取豆瓣评分并使用wordCloud词云库展示

1、简介 Python爬取豆瓣评分并使用wordCloud词云库展示 2、库说明 wordCloud词云绘图库参数简介: Parameters | ---------- | font_path : string | 使用的字体库 | width : int (default=400)...

2019-03-12 13:03:09 196 0

原创 机器学习实战篇:利用LDA模型进行主题分析

1、简介 本文讲解利用LDA模型,建立一个主题分析模型案例。LDA具体内容请读者参考其他资料。 2、案例 ### 案例通过对自己造的5个文档进行LDA建模,这里主题数量为3个。具体如下: # from nltk import stopwords import nltk # nltk.do...

2019-03-11 14:02:44 338 0

原创 机器学习实战篇:使用贝叶斯模型对鸢尾花数据集分类

1、简介 本文主要讲解朴素贝叶斯及其推理,并实现鸢尾花数据的分类问题 2、算法解释 朴素贝叶斯最初来源于统计科学领域。根据朴素贝叶斯公式: 由于类似然涉及到多个特征的组合求解较为困难。所以为了简化运算,降低计算复杂度,我们假设每个特征具备统计独立性,即特征间不存在关联性。这样就可以简化...

2019-03-11 12:04:09 1426 2

原创 机器学习实战篇:线性回归及多项式回归实现波士顿房价预测并评估模型

1、简介 本文使用传统机器学习算法线性回归及多项式回归实现波士顿房价数据集预测并评估两种模型 2、使用方法 线性回归、多项式回归、均方误差评估、决定系数评估 3、代码实现 import matplotlib.pyplot as plt import pandas as pd from ...

2019-03-09 17:53:12 2452 0

原创 机器学习实战篇:使用机器学习在线算法与外存学习进行情感分析

1、简介 情感分析又称为观点挖掘,是NLP领域一个非常流行的分支;它分析的是文档的情感倾向。本节将使用互联网电影数据库(IMDb)中大量的电影评论数据进行试验验证。该数据集包含5万条关于电影的评论。 数据集下载地址:http://ai.stanford.edu/~amaas/data/senti...

2019-03-08 12:35:03 104 0

原创 机器学习实战篇:使用机器学习算法逻辑回归进行情感分析

本节将讨论使用机器学习进行情感分析并给出代码实现。 1、简介 情感分析又称为观点挖掘,是NLP领域一个非常流行的分支;它分析的是文档的情感倾向。本节将使用互联网电影数据库(IMDb)中大量的电影评论数据进行试验验证。该数据集包含5万条关于电影的评论。 数据集下载地址:http://ai.st...

2019-03-08 12:28:05 947 0

原创 ImportError: cannot import name 'cross_validation'

导入cross_validation时出现错误: from sklearn import cross_validation Traceback (most recent call last): File "<ipython-input-2-9a234834f33a...

2019-02-13 12:13:19 1208 0

原创 人群异常行为检测数据集汇总

人群异常行为检测数据集汇总   Dataset size description UCSD Anomaly Detection Dataset 98 video clips The UCSD anomaly detection annotated dataset w...

2019-02-11 21:40:00 5667 1

原创 机器学习算法:多元高斯模型

本文结构如下: 1:多元正态分布及可视化 2:双高斯独立分布可视化 3:从零开始推导多元高斯分布 4:多元正态分布性质 5:高斯判别分析模型 6:高斯判别分析模型Demo 1: 多元正态分布及可视化 多元正态分布也叫多元高斯分布,这个分布的两个参数分别是平均向量  和一个协方差矩阵 ...

2019-02-11 21:38:57 1300 0

原创 论文:《Learning Deep Features for Discriminative Localization》Weakly_detector

Jupyter notebook for an example Class Activation Map produced from a TensorFlow-based VGG model on the Caltech256 dataset   By Masood Krohy (https:...

2019-02-11 21:38:13 100 0

原创 使用OpenCV进行基本图像处理

背景 在进行一个和视频分析相关的项目研究的时候,我们需要前置使用OpenCV对图像进行预处理。在密集使用OpenCV的API的过程中,我们有了这样一种感觉:大部分人写的API都是ctrl+c 和 ctrl+v,而OpenCV的好多API,每一个API背后都是一篇论文。感动之余,Gemfield写...

2019-02-11 21:37:12 514 0

原创 基于Python的OpenCV图像处理

一、Shi-Tomasi角点检测算子 1.原理 2.OpenCV实现 二、光流法视频目标跟踪 1.光流的概念 2.光流方程推导 3.Lucas-Kanade方法 4.OpenCV中的Lucas-Kanade实现 5.稠密光流 三、HSV色彩空间 四、总结 一、...

2019-02-11 21:36:03 658 0

原创 Keras实现CNN:手写数字识别准确率99.6%

 在安装过Tensorflow后,后安装Keras默认将TF作为后端,Keras实现卷积网络的代码十分简洁,而且keras中的callback类提供对模型训练过程中变量的检测方法,能够根据检测变量的情况及时的调整模型的学习效率和一些参数. 下面的例子,MNIST数据作为测试 import pa...

2019-02-11 21:33:06 1311 1

原创 机器学习教程(一):机器学习简介

目录   引言(Introduction) 1.1 欢迎 1.2 机器学习是什么? 1.3 监督学习 1.4 无监督学习   引言(Introduction) 1.1 欢迎 参考视频: 1 - 1 - Welcome (7 min).mkv 第一个视频主要讲了什么是机器学...

2019-02-06 12:33:28 585 0

原创 IoU(Intersection over Union)定位准确率衡量标准

IoU(Intersection over Union) Intersection over Union是一种测量在特定数据集中检测相应物体准确度的一个标准。我们可以在很多物体检测挑战中,例如PASCAL VOC challenge中看多很多使用该标准的做法。 通常我们在 HOG + Linea...

2019-01-20 14:46:35 413 0

原创 Keras搭建自编码器

  简介:   传统机器学习任务任务很大程度上依赖于好的特征工程,但是特征工程往往耗时耗力,在视频、语音和视频中提取到有效特征就更难了,工程师必须在这些领域有非常深入的理解,并且需要使用专业算法提取这些数据的特征。深度学习则可以解决人工难以提取有效特征的问题,大大缓解机器学习模型对特征工程的依...

2019-01-09 18:53:56 3789 0

提示
确定要删除当前文章?
取消 删除