x的m次幂的m-1阶差分

如何证明

\Delta^{m-1}x^m = m ! x + \dfrac{1}{2} m!(m-1)

这是《数学小丛书》差分多项式一章中留给读者的思考题,在网上搜集没有理想的结果,最后还是在这篇微信推送的参考文献中找到了证明过程,

数学第3期:读《从杨辉三角谈起》华罗庚(三)

证明过程来自文献

林庆泽.高阶等差级数的一些理论及其应用[J].兰州文理学院学报(自然科学版),2015,29(05):26-29

 

直接看懂上方的过程需要一些预备知识,多方搜集材料后现整理如下。

关于母函数,请参考这篇微信推送,

母函数解决问题的威力

关于r-可重排列(r-可重排列: 集合 A(元素个数=n)中可重复地选 r 个(r<=n)元素的排列),参考资料截图如下

下面这步的推导,论文里写的不是很详细,其实主要依据的是论文里的引理2

  笔者在此拓展一点中间步骤,便于读者理解,

当 j =0 时,

\text{C}_m^0x^0\sum_{i=0}^{m-1}\text{C}_{m-1}^i(-1)^i(m-1-i)^m=\dfrac{1}{2}m!(m-1)

当 j= 1时,

\text{C}^1_mx^1\sum_{i=0}^{m-1}\text{C}^i_{m-1}(-1)^i(m-1-i)^{m-1}=m(m-1)!x=m!x

当 j > 1时,

\text{C}^j_mx^j\sum_{i=0}^{m-1}\text{C}^i_{m-1}(-1)^i(m-1-i)^{m-j}=0

将上面三项相加即为,

\Delta^{m-1}x^m=m!x+\dfrac{1}{2}m!(m-1)

原式得证。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值