并查集(Disjoint Set)

并查集(Disjoint Set)

一种特殊的数据结构,用于检查有向图无向图是否存在环

原理:

将边的俩头的的点,放入并查集中 ,如果某条边的俩个点都在并查集集内 ,则该图内有环

难点:如何实现将集合合并

逻辑实现:

建立一个父节点数组;

初始的父节点都被设为了特殊值(例如-1),接下来以边连接的方式来更改父节点,

如果遍历某条边时,如过边的俩个点根节点不同,将其中一个根节点指向另一个,实现俩个集合的归并;(无关系的点进行合并)

如果遍历到某条边的俩端的根节点都在集合内(初始根节点为-1),代表俩点都已经被添加到归并到集合中过了;

而集合内存在链接代表成环

代码合并实现:

//    寻找根节点函数
    int findfatherroot(int x,int []parent){
        int xroot=x;
        while (parent[xroot]!=-1){
            xroot=parent[xroot];
        }
        return xroot;
    }
    
    //    判断是否成环函数,运用并查集,成环则返回false,不成环则返回ture
    boolean unio(int x,int y,int parent[]){
        int xroot=findfatherroot(x,parent);
        int yroot=findfatherroot(y,parent);

        if(xroot!=yroot){
            parent[yroot]=xroot;
            return true;
        }else {
            rls[0]=x;
            rls[1]=y;
            return false;
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值