题目:
为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。
但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。
事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。
1 2 3 4 5 6
我们希望寻找到能除尽1至n的的每个数字的最小整数。
不要小看这个数字,它可能十分大,比如n=100, 则该数为:
6972 0375 2297 1247 7164 5338 0893 5312 3035 5680 0
请编写程序,实现对用户输入的 n (n<100)求出1~n的最小公倍数。
例如:
用户输入:
6
程序输出:
60
用户输入:
10
程序输出:
2520
题目分析:
题目求的是前n个数的最小公倍数,如果我们求出了前n-1个数的最小公倍数,我们怎么来求前n个数的最小公倍数?我们假设前n-1个数的最小公倍数是a,第n个数是b,
那么前n个数的最小公倍数是a*b/gcd(a,b)(gcd表示欧几里德算法,用于求两个数的最大公约数),好,现在问题的关键我们分析清楚了,但有个问题啊,就正如题目说的,数据可能非常大,也就是上面分析的公式中的a可能非常大,这时,我们简单的类型是存储不下这么大的数据,针对这种情况,我们就只能用数组去进行相应的存储(大数操作)。到了这里,思路大概就分析清楚了,我们再来观察一下这个公式,a*b/gcd(a,b),如果我们顺序去求这个公式的话,我们要编写的大数函数就有三个(大数相乘(a*b)、大数相除(a*b)/gcd(a,b)、大数求模gcd(a,b)),我们再来仔细看下这个公式gcd(a,b)表示a,b的最大公因数,那么b/gcd(a,b)呢?b是小于100的,而gcd(a,b)又是a,b的最大公约数,b/gcd(a,b)的结果是不会超过100的,所以我们可以把b/gcd(a,b)看成是一个整体,这样的话,我们就只用编写两个关于大数的函数(大数相乘、大数求模),好了,所有的情况都分析清楚了,那就贴代码了.
代码:
-
#include<iostream>
-
using namespace std;
-
#define MAXN 100000
-
char res[MAXN] = {'\0'};
-
void multi(char* ch,int num)
-
{
-
int i,high=0,temp;
-
for(i=0;ch[i];++i)
-
{
-
temp = num*(ch[i]-48)+high;
-
ch[i] = temp%10 + '0' ;
-
high = temp /10;
-
}
-
//针对进位还有剩余的情况
-
while(high)
-
{
-
ch[i++] = high%10+48;
-
high /=10;
-
}
-
}
-
int gcd(int a,int b)
-
{
-
return b==0 ? a : gcd(b,a%b);
-
}
-
int mod(char* ch,int b)
-
{
-
int left=0,i;
-
for(i=-1;ch[i+1]!='\0';++i);
-
for(;i>=0;--i)
-
{
-
left = left*10+ch[i]-48;
-
left %=b;
-
}
-
return left==0 ? b : gcd(b,left);
-
}
-
void solve(int n)
-
{
-
res[0]='1';
-
for(int i=2;i!=n+1;++i)
-
{
-
int temp = mod(res,i);
-
multi(res,i/temp);
-
}
-
}
-
void print(char* ch)
-
{
-
int i;
-
for(i=-1;ch[i+1];++i);
-
for(;i>=0;--i)
-
{
-
cout << ch[i] ;
-
}
-
}
-
int main()
-
{
-
int n;
-
cin >> n;
-
solve(n);
-
print(res);
-
return 0;
-
}
转载于:https://my.oschina.net/u/656608/blog/142802