蓝桥杯决赛试题:求1到n的最小公倍数

题目:

为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。
但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。
事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。
1 2 3 4 5 6

我们希望寻找到能除尽1至n的的每个数字的最小整数。

不要小看这个数字,它可能十分大,比如n=100, 则该数为:
6972 0375 2297 1247 7164 5338 0893 5312 3035 5680 0

请编写程序,实现对用户输入的 n (n<100)求出1~n的最小公倍数。

例如:
用户输入:
6
程序输出:
60

用户输入:
10
程序输出:
2520

题目分析:

题目求的是前n个数的最小公倍数,如果我们求出了前n-1个数的最小公倍数,我们怎么来求前n个数的最小公倍数?我们假设前n-1个数的最小公倍数是a,第n个数是b,

那么前n个数的最小公倍数是a*b/gcd(a,b)(gcd表示欧几里德算法,用于求两个数的最大公约数),好,现在问题的关键我们分析清楚了,但有个问题啊,就正如题目说的,数据可能非常大,也就是上面分析的公式中的a可能非常大,这时,我们简单的类型是存储不下这么大的数据,针对这种情况,我们就只能用数组去进行相应的存储(大数操作)。到了这里,思路大概就分析清楚了,我们再来观察一下这个公式,a*b/gcd(a,b),如果我们顺序去求这个公式的话,我们要编写的大数函数就有三个(大数相乘(a*b)、大数相除(a*b)/gcd(a,b)、大数求模gcd(a,b)),我们再来仔细看下这个公式gcd(a,b)表示a,b的最大公因数,那么b/gcd(a,b)呢?b是小于100的,而gcd(a,b)又是a,b的最大公约数,b/gcd(a,b)的结果是不会超过100的,所以我们可以把b/gcd(a,b)看成是一个整体,这样的话,我们就只用编写两个关于大数的函数(大数相乘、大数求模),好了,所有的情况都分析清楚了,那就贴代码了.

代码:

 

 
  1. #include<iostream>

  2.  
  3. using namespace std;

  4.  
  5. #define MAXN 100000

  6.  
  7. char res[MAXN] = {'\0'};

  8.  
  9. void multi(char* ch,int num)

  10.  
  11. {

  12.  
  13. int i,high=0,temp;

  14.  
  15. for(i=0;ch[i];++i)

  16.  
  17. {

  18.  
  19. temp = num*(ch[i]-48)+high;

  20.  
  21. ch[i] = temp%10 + '0' ;

  22.  
  23. high = temp /10;

  24.  
  25. }

  26.  
  27. //针对进位还有剩余的情况

  28.  
  29. while(high)

  30.  
  31. {

  32.  
  33. ch[i++] = high%10+48;

  34.  
  35. high /=10;

  36.  
  37. }

  38.  
  39. }

  40.  
  41. int gcd(int a,int b)

  42.  
  43. {

  44.  
  45. return b==0 ? a : gcd(b,a%b);

  46.  
  47. }

  48.  
  49. int mod(char* ch,int b)

  50.  
  51. {

  52.  
  53. int left=0,i;

  54.  
  55. for(i=-1;ch[i+1]!='\0';++i);

  56.  
  57. for(;i>=0;--i)

  58.  
  59. {

  60.  
  61. left = left*10+ch[i]-48;

  62.  
  63. left %=b;

  64.  
  65. }

  66.  
  67. return left==0 ? b : gcd(b,left);

  68.  
  69. }

  70.  
  71. void solve(int n)

  72.  
  73. {

  74.  
  75. res[0]='1';

  76.  
  77. for(int i=2;i!=n+1;++i)

  78.  
  79. {

  80.  
  81. int temp = mod(res,i);

  82.  
  83. multi(res,i/temp);

  84.  
  85. }

  86.  
  87. }

  88.  
  89. void print(char* ch)

  90.  
  91. {

  92.  
  93. int i;

  94.  
  95. for(i=-1;ch[i+1];++i);

  96.  
  97. for(;i>=0;--i)

  98.  
  99. {

  100.  
  101. cout << ch[i] ;

  102.  
  103. }

  104.  
  105. }

  106.  
  107. int main()

  108.  
  109. {

  110.  
  111. int n;

  112.  
  113. cin >> n;

  114.  
  115. solve(n);

  116.  
  117. print(res);

  118.  
  119. return 0;

  120.  
  121. }

 

转载于:https://my.oschina.net/u/656608/blog/142802

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值