直方图规定化(直方图匹配)

在介绍直方图规定化之前,先介绍一下统计直方图和累积直方图。参考自:http://blog.csdn.net/tkp2014/article/details/40151515

对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。

统计直方图

为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即:

上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

累积直方图 

图像特征统计的累积直方图也是一个1-D的离散函数,即:

 上式的各个参数含义同前,与上图对应的累积直方图见下:

直方图匹配


直方图均衡化的优点是能自动增强整个图像的对比度,但它的具体增强效果不易控制,处理的结果总是得到全局的均衡化的直方图.实际工作中,有时需要变换直方图使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度,这时可采用比较灵活的直方图规定化(也成为直方图匹配)方法。

直方图规定化(histogram specification)又称直方图匹配,是指使一幅图像的直方图变成规定形状的直方图而对图像进行变换的增强方法。就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。所以,直方图修正的关键就是灰度映像函数。

直方图规定化原理是对两个直方图都做均衡化,变成相同的归一化的均匀直方图。以此均匀直方图起到媒介作用,再对参考图像做均衡化的逆运算即可。直方图均衡化是直方图规定化的桥梁。











关于这部分内容的具体原理可以参考冈萨雷斯的《数字图像处理第二版中文版》,这里讲的比较详细。









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值