传送门:http://poj.org/problem?id=1061
裸扩展欧几里德算法,可做模板
根据题意可列出一个等式:
(x+m*s) - (y+n*s) = k*L(k = 0,1,2,.....)
变形后:
(n-m)*s + k*L =x-y
令 a = n - m,b = L,c = x - y,即
a*s +b*k =c
只要上式存在整数解,则两青蛙能相遇,否则不能。
因为测试数据可能很大,枚举会超时,只能扩展欧几里德算法了。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
void extend_euclid(LL a,LL b,LL &m,LL &n){
if(b==0)
{
m = 1;
n = 0;
return ;
}
extend_euclid(b,a%b,m,n);
LL t;
t = m;
m = n;
n = t - a/b*n;
}
int main()
{
int i,j,flag;
LL x,y,n,m,a,b,c,l,tmp,t1 = 0,t2 = 0,t;
while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l)!=EOF){
a=n-m;
b=l;
c=x-y;
tmp=gcd(a,b);
if(c%tmp!=0){
printf("Impossible\n");
continue;
}
a /= tmp;//tmp为a,b的最大公约数
b /= tmp;
c /= tmp;//经过筛选c一定是tmp的倍数
extend_euclid(a,b,t1,t2);
t = c*t1/b;
t1 = c*t1-t*b;
if(t1<0){
if(b>0)
t1+=b;
}
printf("%lld\n",t1);
}
return 0;
}