【问题描述】这是一个古老而又经典的问题。用给定的几种钱币凑成某个钱数,一般而言有多种方式。例如:给定了 6 种钱币面值为 2、5、10、20、50、100,用来凑 15 元,可以用 5 个 2 元、1个 5 元,或者 3 个 5 元,或者 1 个 5 元、1个 10 元,等等。显然,最少需要 2 个钱币才能凑成 15 元。
你的任务就是,给定若干个互不相同的钱币面值,编程计算,最少需要多少个钱币才能凑成某个给出的钱数。
【输入形式】输入可以有多个测试用例。每个测试用例的第一行是待凑的钱数值 M(1 <= M<= 2000,整数),接着的一行中,第一个整数 K(1 <= K <= 10)表示币种个数,随后是 K个互不相同的钱币面值 Ki(1 <= Ki <= 1000)。输入 M=0 时结束。
【输出形式】每个测试用例输出一行,即凑成钱数值 M 最少需要的钱币个数。如果凑钱失败,输出“Impossible”。你可以假设,每种待凑钱币的数量是无限多的。
【样例输入】
15
6 2 5 10 20 50 100
1
1 2
0
【样例输出】
2
Impossible
#include<iostream>
using namespace std;
int main()
{
int n,m;
while (cin>>m&&m){
cin>>n;
int *t=new int[n+1];
int *coin=new int[n+1];
for(int i=1;i<n+1;i++){
cin>>t[i];
coin[i]=(m/t[i]);
}
int d[2002]={0};
for (int i=1;i<=m;i++) d[i]=99999;
for(int i=1;i<=n;i++)
for(int j=1;j<=coin[i];j++)
for(int k=m;k>=t[i];k--){
d[k]=min(d[k-t[i]]+1,d[k]);
}
if (d[m]==99999) cout<<"Impossible"<<endl;
else cout<<d[m]<<endl;
}
}