【问题描述】
这是一个古老而又经典的问题。用给定的几种钱币凑成某个钱数,一般而言有多种方式。例如:给定了 6 种钱币面值为 2、5、10、20、50、100,用来凑 15 元,可以用 5 个 2 元、1个 5 元,或者 3 个 5 元,或者 1 个 5 元、1个 10 元,等等。显然,最少需要 2 个钱币才能凑成 15 元。你的任务就是,给定若干个互不相同的钱币面值,编程计算,最少需要多少个钱币才能凑成某个给出的钱数。
【输入形式】输入可以有多个测试用例。每个测试用例的第一行是待凑的钱数值 M(1 <= M<= 2000,整数),接着的一行中,第一个整数 K(1 <= K <= 10)表示币种个数,随后是 K个互不相同的钱币面值 Ki(1 <= Ki <= 1000)。输入 M=0 时结束。
【输出形式】每个测试用例输出一行,即凑成钱数值 M 最少需要的钱币个数。如果凑钱失败,输出“Impossible”。你可以假设,每种待凑钱币的数量是无限多的。
【样例输入】
15
6 2 5 10 20 50 100
1
1 2
0
【样例输出】
2
Impossible
首先建立一个二维数组dp[K][N],表示:共K种钱币要凑N元钱。
dp[i][j]表示使用前 i 种钱币组成 j 的钱数的最少钱币数。
①以2,5,10,20,50,100凑15元为例,则建立表格,并填充第一行如下:
只用2元的钱币凑钱,其中3000表示无法凑出。
②接下来考虑第二行,增加考虑金额为5的钱币,以dp[1][14]为例(图中红色格子)
如果5元的0张,则总钱币数为dp[0][14]=7
如果5元的1张,则总钱币数为dp[0][9]+1=3001
如果5元的2张,则总钱币数为dp[0][4]+1=2+2=4
如果5元的3张,则总钱币数为dp[0][-1]+3,数组越界,不考虑
因此最优解为4,即dp[2]=4
进一步地思考:计算dp[1][14]的时候,是否真的需要考虑≥2张的情况呢?
事实上,在计算dp[1][9]的时候,我们已经穷举了dp[0][9]、dp[0][4],得到了最优解。因此在计算dp[1][14]时,只需选择dp[0][14]和 dp[1][9]+1的较小者。
最后的结果: