bzoj1039 [ZJOI2008]无序运动Movement AC自动机 计算几何

对于平移,旋转,放缩,由于任意相邻两线段呈夹角不变,长度比例不变。因此只需要判断相邻两线段长度比例和夹角不变。
夹角可以用叉积和点积的比值以及符号确定。
注意必须保留两个符号。
然后可以用AC自动机计算,每个点的答案是这个点fail树子树中的点被长串经过的次数和。

对于翻转操作只需把长的串翻转再做一遍。
注意判断翻转不变的串和长度小于3的串。

#include <bits/stdc++.h>
using namespace std;
#define N 200010
#define M 1600010
int n,m,cnt,tot;
int len[M],fail[M],en[M],q[M],ans[M],num[M];
bool one[M];
map<int,int>ch[M];
map<int,int>::iterator it; 
char getc()
{
    static const int LEN = 4096;
    static char buf[LEN],*S=buf,*T=buf;
    if(S == T)
    {
        T = (S=buf)+fread(buf,1,LEN,stdin);
        if(S == T)return EOF;
    }
    return *S++;
}
int read()
{
    static char ch;
    static int D;
    int tp=0;
    while(!isdigit(ch=getc()))
        if(ch=='-')tp=1;
    for(D=ch-'0'; isdigit(ch=getc());)
        D=(D<<3)+(D<<1)+(ch-'0');
    return tp ? -D:D;
}
struct poi
{
    int x,y;
    poi(){}
    poi(int x,int y):x(x),y(y){}
    friend int operator * (const poi &r1,const poi &r2)
        {return r1.x*r2.x+r1.y*r2.y;}
    friend int operator ^ (const poi &r1,const poi &r2)
        {return r1.x*r2.y-r2.x*r1.y;}
    friend poi operator - (const poi &r1,const poi &r2)
        {return poi(r1.x-r2.x,r1.y-r2.y);}
    int len(){return x*x+y*y;}
}a[M],b[N];
struct node
{
    int v1,v2,v3,v4;
    node(){}
    node(int r1,int r2,int r3,int r4)
    {
        int t=abs(__gcd(r1,r2));
        v1=r1/t;v2=r2/t;v3=r3;v4=r4;
        if(!r3)v4= r4<0 ? -1:1;
        else if(!r4)v3= r3<0 ? -1:1;
        else t=abs(__gcd(r3,r4)),v3/=t,v4/=t;
    }
    friend bool operator < (const node &r1,const node &r2)
    {
        return r1.v1==r2.v1 ? (r1.v2==r2.v2 ? (r1.v3==r2.v3 ? 
            r1.v4<r2.v4:r1.v3<r2.v3):r1.v2<r2.v2):r1.v1<r2.v1;
    }
    friend bool operator != (const node &r1,const node &r2)
        {return r1.v1!=r2.v1||r1.v2!=r2.v2||r1.v3!=r2.v3||r1.v4!=r2.v4;}
}st[M],s[N],v[M];
int get(node x)
{
    int t=lower_bound(st+1,st+1+cnt,x)-st;
    if(st[t]!=x)return 0;
    return t;
}
void match()
{
    int h,r;q[h=r=1]=1;
    while(h<=r)
    {
        int t=q[h++];
        for(it=ch[t].begin();it!=ch[t].end();++it)
        {
            int t1=fail[t];
            while(t1&&!ch[t1].count((*it).first))
                t1=fail[t1];
            fail[(*it).second]=t1 ? ch[t1][(*it).first]:1;
            q[++r]=(*it).second;
        }
    }
}
void calc()
{
    memset(num,0,sizeof(num));
    for(int now=1,i=2;i<n;i++)
    {
        int t=get(s[i]);
        while(now&&!ch[now].count(t))
            now=fail[now]; 
        now=now ? ch[now][t]:1;
        num[now]++;
    }
    for(int i=tot;i>=1;i--)
        num[fail[q[i]]]+=num[q[i]];
    for(int i=1;i<=m;i++)
        if(len[i]>2)
            ans[i]+=num[en[i]];
}
int main()
{
    //freopen("tt.in","r",stdin);
    n=read();m=read();
    for(int i=1,K;i<=m;i++)
    {
        len[i]=read();
        for(int j=1;j<=len[i];j++)
            a[j].x=read(),a[j].y=read();
        if(len[i]<=2)continue;
        one[i]=1;
        for(int j=2;j<len[i];j++)
        {
            poi p1=a[j]-a[j-1],p2=a[j+1]-a[j];
            v[++cnt]=st[cnt]=node(p1.len(),p2.len(),p1*p2,p1^p2);
            if(p1^p2)one[i]=0;
        }
    }
    sort(st+1,st+1+cnt);
    for(int i=1;i<=n;i++)
        b[i].x=read(),b[i].y=read();
    tot=1;fail[1]=0;
    for(int i=1,cnt=1;i<=m;i++)
        if(len[i]>2)
        {
            int now=1;
            for(int j=0;j<len[i]-2;j++,cnt++)
            {
                int t=get(v[cnt]);
                if(!ch[now].count(t))
                    ch[now][t]=++tot;
                now=ch[now][t];
            }
            en[i]=now;
        }
    match();
    for(int i=2;i<n;i++)
    {
        poi p1=b[i]-b[i-1],p2=b[i+1]-b[i];
        s[i]=node(p1.len(),p2.len(),p1*p2,p1^p2);
    }
    calc();
    for(int i=2;i<n;i++)s[i].v4=-s[i].v4;
    calc();
    for(int i=1;i<=m;i++)
    {
        if(len[i]<=2)printf("%d\n",n-len[i]+1);
        else
        {
            if(one[i])ans[i]/=2;
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页