使用PyMuPdf将pdf文件转化为img

将pdf文件转化为img

1 简介

将pdf转化为img方法比较多,本文介绍一下pdf2image和PyMuPDF,使用pdf2image依赖poppler才能够实现转化pdf,由于安装配置poppler比较麻烦(Poppler 是用于处理 PDF 文档的开源库。它可以对pdf文件进行页面提取、文本提取、注释和书签等了一系列高级功能),因此选择了PyMuPDF库。

# 安装pymupdf
pip install pymupdf

# 安装pymupdf4llm
pip install pymupdf4llm

2 使用PyMuPDF

import pathlib
import pymupdf4llm
import pymupdf


def pdf_to_md():
    # 转化为mark down
    md_text = pymupdf4llm.to_markdown("E:/test/tes2.pdf")
    # 存储markdown
    pathlib.Path("E:/test/tes2.md").write_bytes(md_text.encode())


def pdf_to_img():
    # 打开文档
    pdf = pymupdf.open("E:/test/tes2.pdf")

    # 读取每页pdf文件
    for page in pdf:
        # 设置分辨率
        # 不设置分辨率,dpi默认96
        pix = page.get_pixmap(dpi=300)

        # 转化为png
        pix.save("E:/test/img/page-%i.png" % page.number)


def pdf_to_other():
    # 打开文档
    pdf = pymupdf.open("E:/test/tes2.pdf")

    # 查看文档的基本信息
    meta_data = pdf.metadata
    print(meta_data)

    # 查找特定页面
    page = pdf.load_page(1)
    print(page)

    # 显示文本中的大纲标题
    # 返回值元素:[大纲级别, 大纲名称 , 大纲所在位置]
    toc = pdf.get_toc()
    print(toc)


if __name__ == '__main__':
    pdf_to_md()
    pdf_to_img()
    pdf_to_other()


遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值