TenorFlowJS-激活函数

本文详细介绍了TensorFlowJS中几种常用的激活函数,包括线性(linear)、ReLU和softmax。线性函数不作任何改变,ReLU则将负数置0,保留正数,而softmax则是对输入进行归一化,常用于多分类问题。文中通过实例展示了这些激活函数的使用和效果。
摘要由CSDN通过智能技术生成

概述

激活函数用来决定一个神经元的最终的输出。譬如对一个细胞来说,理想的输出是0和1。但是如果真实的输出是0.85的话,这个时候用来决定输出是0还是1的函数就叫激活函数(从另一个角度来看,有些激活函数有点像数字信号处理里面的将连续信号离散化)。

激活函数或者位于网络的尾部,用于调整输出,或者位于Layer之间。本文介绍激活函数用于Dense Layer的情况。
在这里插入图片描述

图片来自:
https://cdn-images-1.medium.com/max/1400/0*44z992IXd9rqyIWk.png

Dense layer

Dense Layer的功能由下面的函数来描述:
output = activation(dot(input, kernel) + bias
这里的kernel不是过滤器的内核,而是weights matrix。所以kernel的大小,应该和输入的大小一致。
从这个公式看,Dense 层解决的是多元一次方程的求解问题。如果输入是1,则是y = kx +b。

tfjs-examples/getting-started:

async function run() {
  // Create a simple model.
  const model = tf.sequential();
  model.add(tf.layers.dense({units: 1, inputShape: [1]}));

  // Prepare the model for training: Specify the loss and the optimizer.
  model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

  /* 38.2320556640625
  // Generate some synthetic data for training. (y = 2x - 1)
  const xs = tf.tensor2d([-1, 0, 1, 2, 3, 4], 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值