正弦分析2--三角函数线

这篇博客介绍了三角函数线的概念,包括正弦线、余弦线和正切线,它们是通过单位圆与角度的相互关系定义的。三角函数线的长度和方向分别对应于正弦、余弦和正切的值及符号。通过五点法可以描绘正弦函数的关键点,并指出正弦和余弦函数之间的关系。同时强调了作图时必须先建立单位圆,以及三角函数线对于表示三角函数值的重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设任意角a的顶点在原点O(单位圆的圆心),始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),过点P作x轴的垂线,,垂足为点M;过点A(1,0)作单位圆的切线,设它与角a的终边(当a位于第一、第四象限时)或其反向延长线(当a位于第二、第三象限是)相交于点T,于是有

sina=y=MP,

cosa=x=OM,

tan a=y/x=PM/OM=AT/OA=AT.

我们规定与坐标轴同向时,方向为正方向与坐标轴反向时,方向为负向,则有向线段MP,OM,AT,分别叫做角a的正弦线、余弦线、正切线,他们统称三角函数线。

因为正弦函数转一圈后会重合,所以一般以2kpi为周期。

(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数值的绝对值,方向表示三角函数值的正负。

(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先做单位圆。

(3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面。

正弦和余弦函数的绘制:可见,当终边位于一二象限时,MP为正,此时正弦的值也是正的。

 此外,还有五点法可选,正弦函数的五个关键点为:

(0,0) (pi/2, 1) (pi, 0)   (3pi/2, -1)  (2pi,0)

=================================-================================

余弦函数:

(0,1)  (pi/2, 0) (pi, -1) (3pi/2, 0) 与正弦的5个值做对比可见,cos(x) = sin(x+pi/2) 即

sin函数延后pi/2 即得 cos函数 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值