2019 第十届蓝桥杯Java省赛B组个人题解

2019 第十届蓝桥杯Java省赛B组个人题解

前言

  以下的第十届蓝桥杯Java B组省赛的题目题解只是我个人的题解,提供一些解题思路,仅作参考,如有错误,望大家指出,不胜感激,我会及时更改。

  本来想把比赛题目上传到CSDN上免费下载,上传之后发现默认是5积分(根据下载热度和评星积分会自己调整),后来了解到现在的CSDN向知识付费靠拢,激励用户上传资源,取消了用户自行定价的功能和下架资源的功能(需要找客服下架,客服根本不理啊)。

  2019 第十届蓝桥杯Java省赛B组题目——CSDN(需要5或者更多积分(系统自己调的),希望大家尽量下载下面链接的,谁的积分来的都不容易)

  2019 第十届蓝桥杯Java省赛B组题目下载——提取码: yukk

试题A:组队——答案:490

import java.util.Scanner;
/**
 * 
 * @ClassName: Team组队
 * @Description: 题目不难理解,让有的人迷糊的可能就是一个队员只能选中一次。此题考试手动筛选一下就行,想写程序验证的也可以。
 * @author: colou
 * @date: 2019年3月30日 上午8:58:21
 */
public class Team组队 {
   

	public static void main(String[] args) {
   
		Scanner input = new Scanner(System.in);
		try {
   
			int[][] team = new int[20][5];
			for (int i = 0; i < 20; i++) {
   
				for (int j = 0; j < 5; j++) {
   
					team[i][j] = input.nextInt();
				}
			}
			int maxSum = 0;
			for (int i = 0; i < 20; i++)
				for (int j = 0; j < 20; j++)
					for (int k = 0; k < 20; k++)
						for (int h = 0; h < 20; h++)
							for (int g = 0; g < 20; g++)
								if ((i != j && i != k && i != h && i != g) && (j != k && j != h && j != g)
										&& (k != h && k != g) && h != g) {
   
									int max = team[i][0] + team[j][1] + team[k][2] + team[h][3] + team[g][4];
									if (max > maxSum)
										maxSum = max;
								}
			System.out.println(maxSum);
			// 测试用例
			/*
			 * 97 90 0 0 0 92 85 96 0 0 0 0 0 0 93 0 0 0 80 86 89 83 97 0 0 82 86 0 0 0 0 0
			 * 0 87 90 0 97 96 0 0 0 0 89 0 0 95 99 0 0 0 0 0 96 97 0 0 0 0 93 98 94 91 0 0
			 * 0 0 83 87 0 0 0 0 98 97 98 0 0 0 93 86 98 83 99 98 81 93 87 92 96 98 0 0 0 89
			 * 92 0 99 96 95 81
			 */
		} catch (Exception e) {
   
			input.close();
		}
	}
}

试题B:不同子串——答案:100

import java.util.HashSet;
import java.util.Set;

/**
 * 
 * @ClassName: DifferentSubstring不同子串
 * @Description: 审题发现要求是不同的非空子串,则想到Set集合去重,String.substring()方法求子串(一切	为快速解题为前提),然后我们发现它的子串规律为一开始子串长度为1,然后在为2,……,最后为原字符串,这就好	比切豆腐,一开始要求切成每刀间隔为1豆腐块,每次移动距离为1,后来要求切成每刀间隔为2豆腐块,每次移动距离	为1,……,直至为整个大豆腐的大小。
 * @author: colou
 */
public class DifferentSubstring不同子串 {
   
	public static void main(String[] args) {
   
		String target = "0100110001010001";
		Set<String> sub = new HashSet<String>();
		for (int step = 0; step <= target.length() - 1; step++) {
   
			for (int beginIndex = 0, endIndex = 1 + step; endIndex <= target.length(); beginIndex++, endIndex++) {
   
				sub.add(target.substring(beginIndex, endIndex));
			}
		}
		System.out.println(sub.size());
	}
}

试题C:数列求值——答案:4659

/**
 * 
 * @ClassName: SequenceEvaluation数列求值
 * @Description: 此题类似于斐波那契数列,但是所求20190324项的最后四位数字,要是单纯按照斐波那契数列的
 *               思想求下去,别说long类型,BigInteger类型都存不了这么大的数,然后我们发现,所求
 *               20190324项的最后四位数字(也就是变相的告诉我们运算过程只和每个数的后四位有关系),那					 么我们只需要保留每次运算结果的后四位就OK了,这样绝对不会溢出。
 * @author: colou
 */
public class SequenceEvaluation数列求值 {
   

	public static void main(String[] args) {
   
		int a = 1, b = 1, c = 1;
		// 要是求第四项,则i < 4, 同理推得求20190324,则i < 20190324。
		for (int i = 3; i < 20190324; i++) {
   
			int temp = (a + b + c) % 10000;
			a = b;
			b = c;
			c = temp;
		}
		System.out.println(c);
	}
}

试题D:数的分解——答案:40785

/**
 * 
 * @ClassName: DecompositionOfNumbers数的分解
 * @Description: 首先我们分析组成2019的三个数有哪几类?1.ABC类排列方式为六种(ABC,ACB,BAC,BCA,
 *               CAB,CBA),2.AAB类排列方式有三种(AAB,ABA,BAA),3.AAA类排列方式一种。而题目要
 *               求把 2019 分解成 3 个各不相同的正整数之和也就是说只保留ABC类的组合方式,j = i + 1,减少一半排列方式。
 * @author: colou
 */
public class DecompositionOfNumbers数的分解 {
   

	public static void main(String[] args) {
   
		int n = 2019;
		int num = 0;
		for (int i = 1
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值