2019 第十届蓝桥杯Java省赛B组个人题解
前言
以下的第十届蓝桥杯Java B组省赛的题目题解只是我个人的题解,提供一些解题思路,仅作参考,如有错误,望大家指出,不胜感激,我会及时更改。
本来想把比赛题目上传到CSDN上免费下载,上传之后发现默认是5积分(根据下载热度和评星积分会自己调整),后来了解到现在的CSDN向知识付费靠拢,激励用户上传资源,取消了用户自行定价的功能和下架资源的功能(需要找客服下架,客服根本不理啊)。
2019 第十届蓝桥杯Java省赛B组题目——CSDN(需要5或者更多积分(系统自己调的),希望大家尽量下载下面链接的,谁的积分来的都不容易)
2019 第十届蓝桥杯Java省赛B组题目下载——提取码: yukk
试题A:组队——答案:490
import java.util.Scanner;
/**
*
* @ClassName: Team组队
* @Description: 题目不难理解,让有的人迷糊的可能就是一个队员只能选中一次。此题考试手动筛选一下就行,想写程序验证的也可以。
* @author: colou
* @date: 2019年3月30日 上午8:58:21
*/
public class Team组队 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
try {
int[][] team = new int[20][5];
for (int i = 0; i < 20; i++) {
for (int j = 0; j < 5; j++) {
team[i][j] = input.nextInt();
}
}
int maxSum = 0;
for (int i = 0; i < 20; i++)
for (int j = 0; j < 20; j++)
for (int k = 0; k < 20; k++)
for (int h = 0; h < 20; h++)
for (int g = 0; g < 20; g++)
if ((i != j && i != k && i != h && i != g) && (j != k && j != h && j != g)
&& (k != h && k != g) && h != g) {
int max = team[i][0] + team[j][1] + team[k][2] + team[h][3] + team[g][4];
if (max > maxSum)
maxSum = max;
}
System.out.println(maxSum);
// 测试用例
/*
* 97 90 0 0 0 92 85 96 0 0 0 0 0 0 93 0 0 0 80 86 89 83 97 0 0 82 86 0 0 0 0 0
* 0 87 90 0 97 96 0 0 0 0 89 0 0 95 99 0 0 0 0 0 96 97 0 0 0 0 93 98 94 91 0 0
* 0 0 83 87 0 0 0 0 98 97 98 0 0 0 93 86 98 83 99 98 81 93 87 92 96 98 0 0 0 89
* 92 0 99 96 95 81
*/
} catch (Exception e) {
input.close();
}
}
}
试题B:不同子串——答案:100
import java.util.HashSet;
import java.util.Set;
/**
*
* @ClassName: DifferentSubstring不同子串
* @Description: 审题发现要求是不同的非空子串,则想到Set集合去重,String.substring()方法求子串(一切 为快速解题为前提),然后我们发现它的子串规律为一开始子串长度为1,然后在为2,……,最后为原字符串,这就好 比切豆腐,一开始要求切成每刀间隔为1豆腐块,每次移动距离为1,后来要求切成每刀间隔为2豆腐块,每次移动距离 为1,……,直至为整个大豆腐的大小。
* @author: colou
*/
public class DifferentSubstring不同子串 {
public static void main(String[] args) {
String target = "0100110001010001";
Set<String> sub = new HashSet<String>();
for (int step = 0; step <= target.length() - 1; step++) {
for (int beginIndex = 0, endIndex = 1 + step; endIndex <= target.length(); beginIndex++, endIndex++) {
sub.add(target.substring(beginIndex, endIndex));
}
}
System.out.println(sub.size());
}
}
试题C:数列求值——答案:4659
/**
*
* @ClassName: SequenceEvaluation数列求值
* @Description: 此题类似于斐波那契数列,但是所求20190324项的最后四位数字,要是单纯按照斐波那契数列的
* 思想求下去,别说long类型,BigInteger类型都存不了这么大的数,然后我们发现,所求
* 20190324项的最后四位数字(也就是变相的告诉我们运算过程只和每个数的后四位有关系),那 么我们只需要保留每次运算结果的后四位就OK了,这样绝对不会溢出。
* @author: colou
*/
public class SequenceEvaluation数列求值 {
public static void main(String[] args) {
int a = 1, b = 1, c = 1;
// 要是求第四项,则i < 4, 同理推得求20190324,则i < 20190324。
for (int i = 3; i < 20190324; i++) {
int temp = (a + b + c) % 10000;
a = b;
b = c;
c = temp;
}
System.out.println(c);
}
}
试题D:数的分解——答案:40785
/**
*
* @ClassName: DecompositionOfNumbers数的分解
* @Description: 首先我们分析组成2019的三个数有哪几类?1.ABC类排列方式为六种(ABC,ACB,BAC,BCA,
* CAB,CBA),2.AAB类排列方式有三种(AAB,ABA,BAA),3.AAA类排列方式一种。而题目要
* 求把 2019 分解成 3 个各不相同的正整数之和也就是说只保留ABC类的组合方式,j = i + 1,减少一半排列方式。
* @author: colou
*/
public class DecompositionOfNumbers数的分解 {
public static void main(String[] args) {
int n = 2019;
int num = 0;
for (int i = 1