典型的动态规划题目
- 定义状态:dp[i][j]:已跳到第i个且已踩准j个的最高分数
- 初始状态:dp[i][0]=dp[i-1][0]-s[i] (踩准0个 都扣分)
- 状态转移:
① 如果踩准的次数达到奖励机制数,当前选择踩:dp[i-1][j] - s[i],不踩: dp[i-1][j - 1] + s[i] + b[i]
②踩准的次数不达到奖励机制数,当前选择踩:dp[i-1][j] - s[i],不踩: dp[i-1][j - 1] + s[i] - 注意点:已踩个数j不能超过当前跳到的个数i
代码经过空间复杂度优化如下:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int t = in.nextInt();
int[] s = new int[n + 1];
int[] b = new int[n + 1];
int[] dp = new int[n + 1];//空间复杂度优化
for (int i = 1; i < s.length; i++) {
s[i] = in.nextInt();
}
for (int i = 1; i < b.length; i++) {
b[i] = in.nextInt();
}
//初始化
for (int i = 1; i <= n; i++) {
for (int j = i; j > 0; j--) {//j不可能超过i
if (j % t == 0) {
dp[j] = Math.max(dp[j] - s[i], dp[j - 1] + s[i] + b[i]);
} else {
dp[j] = Math.max(dp[j] - s[i], dp[j - 1] + s[i]);
}
}
dp[0] -= s[i];
}
int ans = dp[1];
for (int i = 2; i <= n; i++) {
ans = Math.max(dp[i], ans);
}
System.out.println(ans);
}
}