洛谷java实现(P2029跳舞)

本文介绍了一种使用动态规划解决跳跃游戏问题的方法。定义状态dp[i][j]为已跳到第i个位置且已踩准j个目标的最高得分。文章详细讨论了状态转移方程,并给出了Java实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://www.luogu.com.cn/problem/P2029

典型的动态规划题目

  1. 定义状态:dp[i][j]:已跳到第i个且已踩准j个的最高分数
  2. 初始状态:dp[i][0]=dp[i-1][0]-s[i] (踩准0个 都扣分)
  3. 状态转移:
    ① 如果踩准的次数达到奖励机制数,当前选择踩:dp[i-1][j] - s[i],不踩: dp[i-1][j - 1] + s[i] + b[i]
    ②踩准的次数不达到奖励机制数,当前选择踩:dp[i-1][j] - s[i],不踩: dp[i-1][j - 1] + s[i]
  4. 注意点:已踩个数j不能超过当前跳到的个数i

代码经过空间复杂度优化如下:

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int t = in.nextInt();
        int[] s = new int[n + 1];
        int[] b = new int[n + 1];
        int[] dp = new int[n + 1];//空间复杂度优化
        for (int i = 1; i < s.length; i++) {
            s[i] = in.nextInt();
        }
        for (int i = 1; i < b.length; i++) {
            b[i] = in.nextInt();
        }
        //初始化
        for (int i = 1; i <= n; i++) {
            for (int j = i; j > 0; j--) {//j不可能超过i
                if (j % t == 0) {
                    dp[j] = Math.max(dp[j] - s[i], dp[j - 1] + s[i] + b[i]);
                } else {
                    dp[j] = Math.max(dp[j] - s[i], dp[j - 1] + s[i]);
                }
            }
            dp[0] -= s[i];
        }
        int ans = dp[1];
        for (int i = 2; i <= n; i++) {
            ans = Math.max(dp[i], ans);
        }
        System.out.println(ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值