题意:
n个骑士要进行m轮对决,每一轮每个骑士都要有一个对手。而且每个对手只能打一次。假设a与b打了,c与d打了,那么后面的任意一轮如果a与c打了,那么b就必须和d打,问是否存在方案,存在就输出字典序最小的一组,否则输出Impossible
思路:
构造,将骑士分成2幂次组,然后在组内循环,看到其他题解都只是说了用lowbit(n)来判断是否合法,但并没有说原因的,我在这里补充一下吧,lowbit取的是2进制最低位,减一得到的就是二进制最右端的连续0转化成1,正好对应了2幂次分组的幂次和。
最容易发现和理解的写法应该就是将左上角的块往右下角移,将右上角的块往左下角移,块的大小是2,4,8,16的形式
这是n=8, k=7的情况,k更大的时候可以继续画。
#include<bits/stdc++.h>
#define LL long long
#define INF INT64_MAX
#define MOD 998244353
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef pair<int,int>pa;
const int N = 1005;
int a[N][N];
char s[N];
int n, m, k, _;
int lowbit(int x) {return x&(-x); }
void solve(int len){
for(int l = 1;l+2*len-1 <= n;l += 2*len){
for(int r = 1;r+2*len-1 <= n; r += 2*len){
for(int i = l;i <= l+len-1;i++){
for(int j = r;j <= r+len-1;j++){
a[i+len][j+len] = a[i][j];
}
}
}
}
for(int l = 1;l+2*len-1 <= n;l += 2*len){
for(int r = 2*len;r <= n;r += 2*len){
for(int i = l;i+len <= n;i++){
for(int j = r;j >= r-len+1;j--){
//printf("i = %d %d %d\n", i, j, len);
a[i+len][j-len] = a[i][j];
}
}
}
}
}
int main(){
scanf("%d", &_);
while(_--){
scanf("%d%d", &n, &k);
if(n%2 || k > lowbit(n)-1) printf("Impossible\n");
else{
for(int j = 1;j <= n;j+=2){
a[1][j] = j, a[1][j+1] = j+1;
a[2][j] = j+1, a[2][j+1] = j;
}
for(int i = 2;i <= n;i*=2){
if(n%i) break;
solve(i);
}
for(int i = 2;i <= k+1;i++){
for(int j = 1;j <= n;j++){
printf("%d", a[i][j]);
if(j!=n) printf(" ");
}
printf("\n");
}
}
}
return 0;
}
最骚的是一种用异或写的,不知道是哪位大佬的思路,虽然看表能看出一行中每隔2的i次幂就有减少2的i次幂或者加上下标差+2的i次幂,但感觉还是很难往异或上面去想……
#include<bits/stdc++.h>
#define LL long long
#define INF INT64_MAX
#define MOD 998244353
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef pair<int,int>pa;
const int N = 3e5+7;
int lowbit(int x) {return x&(-x); }
int main(){
int n, m, k, _;
scanf("%d", &_);
while(_--){
int n,m;
scanf("%d%d",&n,&m);
if(m>=lowbit(n)) printf("Impossible\n");
else
{
for(int i=1;i<=m;i++)
{
for(int j=0;j<n-1;j++) printf("%d ",(i^j)+1);
printf("%d\n",(i^(n-1))+1);
}
}
}
return 0;
}