[JSOI2009] 等差数列(线段树)

题目来源:洛谷P4243

在这里插入图片描述

首先发现有区间赋值和区间查询操作,考虑线段树。发现 A A A 操作加的都是一个等差数列,直接在原序列上操作并不好维护,考虑换成差分序列,设 a d d ( l , r , x ) add(l,r,x) add(l,r,x) 表示在区间 [ l , r ] [l,r] [l,r] 都加上 x x x ,对于 A    s   t   a   b A\;s\,t\,a\,b Astab,转变为三步:
1.    a d d ( s , s , a ) 2.    a d d ( s + 1 , t , b ) ( i f ( s + 1 ≤ t ) ) 3.    a d d ( t + 1 , t + 1 , − ( a + b ∗ ( t − s ) ) ) 1.\;add(s,s,a)\qquad2.\;add(s+1,t,b)(if(s+1\le t))\qquad3.\;add(t+1,t+1,-(a+b*(t-s))) 1.add(s,s,a)2.add(s+1,t,b)(if(s+1t))3.add(t+1,t+1,(a+b(ts)))
然后考虑我们在线段树上应该维护什么,观察 B B B 操作,我们直观的想相等的一段一定是一段等差数列,直接维护相等段即可。但这显然小瞧这道题了,观察下面的 h a c k hack hack 数据:

2    3    3    3     \large 2\;3\;3\;3\;\, 2333(差分序列)

按照我们刚才的思路,这段差分序列构成的是两端等差数列,但是 1 3 6 9 12 中的 3 6 9 12 显然是一段等差数列,对于 3 3 3 的差分数组维护的是 3 3 3 1 1 1 之间的信息,与 3 6 9 12 组成的等差数列并无直接关系。换而言之,对于一段连续的相等段,在前面加上一个不相等的数(后文简称作散数)我们也认为他是一段。

那这怎么维护呢?感觉好难维护,换思路吗?
确实得换思路,但还是线段树维护差分,只不过我们不要直接去维护这个东西,我们仍旧考虑维护连续段,把散数的情况在转移过程中,直接解决掉。

我们设 s [ 0 ∖ 1 ∖ 2 ∖ 3 ] s[0{\small{\setminus }}1{\small{\setminus }}2{\small{\setminus }}3] s[0123] 表示 左右端点都不含\左端点含,右端点不含\左端点不含,右端点含\左右端点都含 的区间等差数列最少的个数。
四个转移方程式类似,我们以 s [ 0 ] s[0] s[0] 为例,设左区间为 l l l ,右区间为 r r r ,合并区间为 x x x ,区间左端点为 l n u m lnum lnum ,右端点为 r n u m rnum rnum,则有转移方程式:
x . s [ 0 ] = m i n ( l . s [ 2 ] + r . s [ 1 ] − [ l . r n u m = = r . l n u m ] , l . s [ 0 ] + r . s [ 1 ] , l . s [ 2 ] + r . s [ 0 ] ) x.s[0]=min(l.s[2]+r.s[1]-[l.rnum==r.lnum],l.s[0]+r.s[1],l.s[2]+r.s[0]) x.s[0]=min(l.s[2]+r.s[1][l.rnum==r.lnum],l.s[0]+r.s[1],l.s[2]+r.s[0])
第一个表示,两个都贴如果中间两数相等,说明中间的等差数列可以合并,总数减一,否则直接相加。
第二个表示,左不贴右贴,左区间不包含的那个右端点就会被右区间的直接合并(当成散数来处理)。
第三个与第二个类似。
为什么没有 l . s [ 0 ] + r . s [ 0 ] l.s[0]+r.s[0] l.s[0]+r.s[0] ? 因为如果两边都不贴,那么中间就会产生两个散数,而右端只能处理一个散数,所以此转移不成立。

为什么要这样设状态:因为我们要处理的状态是 散数+连续段 ,而散数只有一个,连续块很好维护,我们可以考虑抛弃散数维护,在合并时顺便处理散块,这样就变得容易维护状态。

对于 A A A 操作,我们只需要更改 l n u m , r n u m lnum,rnum lnum,rnum 即可,因为整体加对于等差数列的数量没有影响,懒标记同样只需要维护 l n u m , r n u m lnum,rnum lnum,rnum
对于 B B B 操作,因为左端点可以直接当成散数处理,所以我们只需要查询 [ l + 1 , r ] [l+1,r] [l+1,r] s [ 3 ] s[3] s[3] 即可。(注意特判 l = r l=r l=r 的情况)

#include<bits/stdc++.h>
using namespace std;
int n,v[100010],a[100010],q,s,t,A,B;
char lx;
struct scc
{
	int s[4],lnum,rnum;
	scc operator + (const scc &x) const
	{
		scc y;
		y.lnum=lnum;
		y.rnum=x.rnum;
		y.s[0]=min(s[2]+x.s[1]-(rnum==x.lnum),min(s[2]+x.s[0],s[0]+x.s[1]));
		y.s[1]=min(s[3]+x.s[1]-(rnum==x.lnum),min(s[1]+x.s[1],s[3]+x.s[0]));
		y.s[2]=min(s[2]+x.s[3]-(rnum==x.lnum),min(s[2]+x.s[2],s[0]+x.s[3]));
		y.s[3]=min(s[3]+x.s[3]-(rnum==x.lnum),min(s[1]+x.s[3],s[3]+x.s[2]));
		return y;
	}
};
struct node
{
	int l,r,add;
	scc num;
} tree[400000];
void build(int p,int l,int r)
{
	tree[p].l=l;
	tree[p].r=r;
	if(l==r)
	{
		tree[p].num.lnum=a[l];
		tree[p].num.rnum=a[r];
		tree[p].num.s[1]=1;
		tree[p].num.s[2]=1;
		tree[p].num.s[3]=1;
		return;
	}
	int mid=(l+r)/2;
	build(2*p,l,mid);
	build(2*p+1,mid+1,r);
	tree[p].num=tree[2*p].num+tree[2*p+1].num;
}
void spread(int p)
{
	if(tree[p].add)
	{
		tree[2*p].add+=tree[p].add;
		tree[2*p].num.lnum+=tree[p].add;
		tree[2*p].num.rnum+=tree[p].add;
		tree[2*p+1].add+=tree[p].add;
		tree[2*p+1].num.lnum+=tree[p].add;
		tree[2*p+1].num.rnum+=tree[p].add;
		tree[p].add=0;
	}
}
void change(int p,int l,int r,int x)
{
	if(tree[p].l>=l&&tree[p].r<=r)
	{
		tree[p].add+=x;
		tree[p].num.lnum+=x;
		tree[p].num.rnum+=x;
		return;
	}
	spread(p);
	int mid=(tree[p].l+tree[p].r)/2;
	if(l<=mid)
	change(2*p,l,r,x);
	if(r>mid)
	change(2*p+1,l,r,x);
	tree[p].num=tree[2*p].num+tree[2*p+1].num;
}
node ask(int p,int l,int r)
{
	if(tree[p].l>=l&&tree[p].r<=r)
	return tree[p];
	spread(p);
	int mid=(tree[p].l+tree[p].r)/2;
	if(l<=mid&&r<=mid)
	return ask(2*p,l,r);
	if(l>mid&&r>mid)
	return ask(2*p+1,l,r);
	node x=ask(2*p,l,r),y=ask(2*p+1,l,r),z;
	z.num=x.num+y.num;
	return z;
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	scanf("%d",&v[i]);
	for(int i=2;i<=n;i++)
	a[i]=v[i]-v[i-1];
	if(n==1)
	{
		scanf("%d",&q);
		while(q--)
		{
			scanf("\n%c%d%d",&lx,&s,&t);
			if(lx=='A')
			scanf("%d%d",&A,&B);
			else
			puts("1");
		}
		return 0;
	}
	build(1,2,n);
	scanf("%d",&q);
	while(q--)
	{
		scanf("\n%c%d%d",&lx,&s,&t);
		if(lx=='A')
		{
			scanf("%d%d",&A,&B);
			if(s!=1)
			change(1,s,s,A);
			if(s+1<=t)
			change(1,s+1,t,B);
			if(t+1<=n)
			change(1,t+1,t+1,-(A+B*(t-s)));
		}
		else
		{
			if(s==t)
			puts("1");
			else
			printf("%d\n",ask(1,s+1,t).num.s[3]);
		}
	}
	return 0;
}

总结:对于线段树一个状态不好处理时,考虑分开不好处理的部分,在合并时去处理。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据引用[1],dp[u][j]表示在u子中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵来表示员工之间的关系。的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值