6-2 邻接表存储图的广度优先遍历
分数 20
作者 DS课程组
单位 浙江大学
试实现邻接表存储图的广度优先遍历。
函数接口定义:
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
其中LGraph是邻接表存储的图,定义如下:
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
函数BFS应从第S个顶点出发对邻接表存储的图Graph进行广度优先搜索,遍历时用裁判定义的函数Visit访问每个顶点。当访问邻接点时,要求按邻接表顺序访问。题目保证S是图中的合法顶点。
裁判测试程序样例:
#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* 最大顶点数设为10 */
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */
LGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
printf(" %d", V);
}
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
int main()
{
LGraph G;
Vertex S;
G = CreateGraph();
scanf("%d", &S);
printf("BFS from %d:", S);
BFS(G, S, Visit);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
给定图如下
2
输出样例:
BFS from 2: 2 0 3 5 4 1 6
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
C (gcc)
思路:
本质上就是从第一个顶点开始,尝试访问尽可能靠近它的顶点,即先访问最靠近它的所有顶点,再访问第二靠近它的所有顶点,以此类推,直到访问完所有的顶点。
定义队列
访问顶点,置访问标志。
将与顶点相连的边的表头指针入队。
遍历整个队列
边表头指针更新为队头指针
进行遍历操作,如果节点没有被访问过,那么将节点的边表头指针入队,访问并置访问标志。
进行下一个顶点的遍历。
AC代码:
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )
{
PtrToAdjVNode p;//边表头指针
PtrToAdjVNode queue[MaxVertexNum];
int head=0;
int tail=0;//定义队列
Visit(S);
Visited[S]=true;//标记
queue[tail++]=Graph->G[S].FirstEdge;//将与顶点相连的边表头指针入队
while(head!=tail)
{//遍历整个队列
p=queue[head++];
while(p!=NULL)
{
if(Visited[p->AdjV]==false){//如果没有被访问过
queue[tail++]=Graph->G[p->AdjV].FirstEdge;//入队
Visit(p->AdjV);
Visited[p->AdjV]=true;
}
p=p->Next;
}
}
}
文末彩蛋~
一个有趣的DFS和BFS的讲解,小仓鼠好阔爱~~~
点这里