了解稀疏矩阵之前,我们先聊聊数组,数组都清楚string[10] str;这里的str就是一个数组,它的存储方式是str[0],str[1],str[2]...这样,放在一个连续存储空间里面。。那么同样的,二维数组我们这里stirng[2][2] str;,它的存储结构也是一个顺序存储,所以我们这里把这个str的2*2写全,str[0][0],str[0][1],str[1][0],str[1][1]这样。。。
二维数组通常称为矩阵,so,矩阵跟稀疏矩阵文字上面是非常相近了,稀疏:我们可以认为是少,什么少,数组里面只有元素...so,元素非常少的矩阵就是稀疏矩阵。比如说100*100的矩阵,里面不为0的元素只有100个,那么我们可以称为他是稀疏矩阵,也就是有效元素远小于总元素的时候,我们可以称为稀疏矩阵。
稀疏矩阵的特点:
1.非0(有效)元素非常少
2.排列没有规律
根据这些特点,我们存储稀疏矩阵元素的时候会以:行号,列号,元素(i,j,a)这样的三元组存储,接下来我们对稀疏矩阵的一些操作。
首先创建数据:
/// <summary>
/// 一个三元组类型
/// </summary>
public struct TupNode
{
//行号
public int r;
//列号
public int c;
//元素值
public int d;
}
/// <summary>
/// 稀疏矩阵顺序表
/// </summary>
public struct TupSparseMatrix
{
//行数
public int rows;
//列数
public int cols;
//非0元素个数
public int nums;
public TupNode[] data;
}
然后就是操作了
/// <summary>
/// 稀疏矩阵的操作
/// </summary>
class SparseMatrixClass
{
readonly int MaxSize = 100;
public TupSparseMatrix trip;
public SparseMatrixClass()
{
trip = new TupSparseMatrix();
trip.data = new TupNode[MaxSize];
}
#region 把二维数组(矩阵)转换成三元组
public void CreateTupSparseMatrix(int[,] matrix)
{
//GetLength是求维度的个数,从0开始
trip.rows = matrix.GetLength(0);
trip.cols = matrix.GetLength(1);
trip.nums = 0;
//遍历这个二维数组
for (int i = 0; i < trip.rows; i++)
{
for (int j = 0; j < trip.cols; j++)
{
//不等于0并且存储数量不超过存储数量的存储
if (matrix[i, j] != 0 && MaxSize > trip.nums)
{
trip.data[trip.nums].r = i;
trip.data[trip.nums].c = j;
trip.data[trip.nums].d = matrix[i, j];
trip.nums++;
}
}
}
}
#endregion
#region 输出三元组(i,j,d)
public string DispTupSparseMatrix()
{
string tupStr = "";
for (int i = 0; i < trip.nums; i++)
{
tupStr += string.Format("({0},{1},{2})", trip.data[i].r, trip.data[i].c, trip.data[i].d);
}
return tupStr;
}
#endregion
#region 矩阵转置,这里稍微优化了下
public void Transpose(ref SparseMatrixClass tb)
{
SparseMatrixClass sm = new SparseMatrixClass();
sm.trip.rows = tb.trip.cols;
sm.trip.cols = tb.trip.rows;
sm.trip.nums = tb.trip.nums;
//置换
for (int i = tb.trip.nums; i >0; i--)
{
sm.trip.data[i].r = tb.trip.data[i].c;
sm.trip.data[i].c = tb.trip.data[i].r;
sm.trip.data[i].d = tb.trip.data[i].d;
}
tb = sm;
}
#endregion
}