
机器学习
文章平均质量分 88
Congee小周
天津大学研究生,研究方向高性能计算,欢迎点赞关注与我交流!
展开
-
【机器学习】——逻辑模型:树模型(决策树)
一、决策树树模型并不只局限于分类场合,而是可用于解决绝大多数机器学习问题,包括排序、概率估计、回归及聚类。参考:https://www.cnblogs.com/muzixi/p/6566803.html原创 2020-08-07 22:31:58 · 1897 阅读 · 0 评论 -
【机器学习】——逻辑模型:概念学习
本节将了解概念学习原创 2020-08-07 10:53:45 · 1797 阅读 · 0 评论 -
【机器学习】——分类:多分类
在上一节中我们已经讨论了如何处理两类分类问题,并对一些常见的任务(评分与排序、类概率估计)进行了总结,本节将讨论两类分类问题的推广,即多分类问题,并简单讨论一下回归问题。多分类问题1.1两种K类分类器假设我们要构造一个K类分类器,有两种方案:一对多(一堆其余):首先训练K个两类分类器,第一个分类器是将C1和C2...Cn类区分开,第二个分类器是将C2和C1,C3...Cn类区分开,以此类推。在训练第i个分类器的时候,我们将来自Ci类的所有实例看成正例,其余的看作负例。有时候会按照某种固定的顺原创 2020-08-06 15:21:18 · 1923 阅读 · 0 评论 -
【机器学习】——分类:两分类及相关任务
一、前言今天开始我将自学机器学习,并且我会在博客持续更新相关内容和一些个人见解,努力打造全网最全最详细笔记。如果你是新手入门,建议你关注我,你会有意想不到的收获。入门的时候建议大家不要选择“西瓜书”,可以先买一本Peter Flach的机器学习。二、基础知识...原创 2020-08-05 11:40:58 · 5177 阅读 · 0 评论 -
【机器学习】——入门:什么是机器学习?
接触机器学习有一段时间了,有些东西还是要记录下来才有意义。从本篇开始,我将持续更新关于机器学习的内容,非常适合新手入门或小白来学习。今天来介绍一下机器学习的整体框架,为我们之后章节的学习铺平道路。1.什么是机器学习?一般来说,机器学习是对依据经验提升自身性能或丰富自身知识的各种算法和系统的系统性研究。通俗点儿,就是使用正确的特征来构造正确的模型,以完成指定的任务。 一个完整的机器学习任务需要经历2个过程:训练和测试。训练就是根据历史数据(或经验)组成一个训练集,训练出一个相对正确的模型。为了.原创 2020-08-04 10:50:42 · 695 阅读 · 0 评论 -
机器学习中,如何判断蕴含式值的真假?
今天在机器学习碰到了概念学习的知识,里面涉及了很多离散数学的概念,因此挑比较重点、难点的地方来总结一下。设P、Q为两个命题,我们称P—>Q为一个蕴含式,那么真值表如下所示:P Q P—>Q 1 0 0 1 1 1 0 1 1 0 0 1 下面我们来详细解释一下如何判断P—>Q的值到底是1还是0,这里我们把P和Q赋予具体的命题P是“汤姆离散数学考了满分”,Q是“汤姆妈妈给汤姆买电脑”那么P—>原创 2020-07-28 21:34:32 · 9359 阅读 · 2 评论