今天在机器学习碰到了概念学习的知识,里面涉及了很多离散数学的概念,因此挑比较重点、难点的地方来总结一下。
设P、Q为两个命题,我们称P—>Q为一个蕴含式,那么真值表如下所示:
P | Q | P—>Q |
1 | 0 | 0 |
1 | 1 | 1 |
0 | 1 | 1 |
0 | 0 | 1 |
下面我们来详细解释一下如何判断P—>Q的值到底是1还是0,这里我们把P和Q赋予具体的命题
P是“汤姆离散数学考了满分”,Q是“汤姆妈妈给汤姆买电脑”
那么P—>Q可以表示为:如果汤姆离散数学考了满分,汤姆妈妈就会给给汤姆买电脑。
当P为真的时候,若Q为真,显然P—>Q为真,值为1
当P为真的时候,若Q为假,汤姆考了满分,但是妈妈却没有给他买电脑,显然没有兑现承诺,所以P—>Q是假的,值为0
当P为假的时候 ,无论Q是真假,P—>Q的值都为真,这是因为当P为假的时候,这个承诺的前提(P)已经不成立了,因此无论结果(Q)如何,都不影响P—>Q的值为真。
最后这两种情况 其实还可以这么理解:
如果P是真的,那么Q一定是真的(这是P—>Q的定义),它的否定是:如果P不是真的,那么Q不一定是真的
所以 满足这种关系的逻辑,都是真的。
对于理解不了的同学们,我总结了2个以下误区,希望大家仔细思考:
①在自然语言中,“如果P,则Q“中的P与Q往往有某种内在的联系,但在数理逻辑中的P与Q不一定有什么内在联系。
②在数学中,“如果P则Q“往往表示前件P为真,Q为真的推理关系,但在数理逻辑中,当前件P为假时,为真。