机器学习中,如何判断蕴含式值的真假?

今天在机器学习碰到了概念学习的知识,里面涉及了很多离散数学的概念,因此挑比较重点、难点的地方来总结一下。

设P、Q为两个命题,我们称P—>Q为一个蕴含式,那么真值表如下所示:

PQP—>Q
100
111
011
001

下面我们来详细解释一下如何判断P—>Q的值到底是1还是0,这里我们把P和Q赋予具体的命题

P是“汤姆离散数学考了满分”,Q是“汤姆妈妈给汤姆买电脑”

那么P—>Q可以表示为:如果汤姆离散数学考了满分,汤姆妈妈就会给给汤姆买电脑。

 

当P为真的时候,若Q为真,显然P—>Q为真,值为1

当P为真的时候,若Q为假,汤姆考了满分,但是妈妈却没有给他买电脑,显然没有兑现承诺,所以P—>Q是假的,值为0

当P为假的时候 ,无论Q是真假,P—>Q的值都为真,这是因为当P为假的时候,这个承诺的前提(P)已经不成立了,因此无论结果(Q)如何,都不影响P—>Q的值为真。

 

最后这两种情况 其实还可以这么理解:

如果P是真的,那么Q一定是真的(这是P—>Q的定义),它的否定是:如果P不是真的,那么Q不一定是真的

所以 满足这种关系的逻辑,都是真的。

 

对于理解不了的同学们,我总结了2个以下误区,希望大家仔细思考:

①在自然语言中,“如果P,则Q“中的P与Q往往有某种内在的联系,但在数理逻辑中的P与Q不一定有什么内在联系。

②在数学中,“如果P则Q“往往表示前件P为真,Q为真的推理关系,但在数理逻辑中,当前件P为假时,为真。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值