统计学习
manjhOK
这个作者很懒,什么都没留下…
展开
-
支持向量机1
【转载请注明出处】http://www.cnblogs.com/jerrylead1 简介支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原转载 2017-09-23 19:27:50 · 254 阅读 · 0 评论 -
支持向量机svm由浅到深
支持向量机通俗导论(理解SVM的三层境界)作者:July 。致谢:pluskid、白石、JerryLead。说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月。声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章。文末转载 2017-09-23 19:59:52 · 931 阅读 · 0 评论 -
惯性传感器的卡尔曼滤波
一、引言下面我们引用文献【1】中的一段话作为本文的开始:想象你在黄昏时分看着一只小鸟飞行穿过浓密的丛林,你只能隐隐约约、断断续续地瞥见小鸟运动的闪现。你试图努力地猜测小鸟在哪里以及下一时刻它会出现在哪里,才不至于失去它的行踪。或者再想象你是二战中的一名雷达操作员,正在跟踪一个微弱的游移目标,这个目标每隔10秒钟在屏幕上闪烁一次。或者回到更远的从前,想象你转载 2017-09-25 20:09:33 · 3398 阅读 · 0 评论 -
惯性传感器滤波
#传感器的原理加速度计:加速度计—我们可以把它想作一个圆球在一个方盒子中。假定这个盒子不在重力场中或者其他任何会影响球的位置的场中,球处于盒子的正中央。你可以想象盒子在外太空中,或远在航天飞机中,离任何天体,一切东西都处于无重力状态。在图中你可以看到我们给每个轴分配了一对墙(我们移除了Y+以此来观察里面的情况)。 设想每面墙转载 2017-09-25 20:20:17 · 6864 阅读 · 1 评论 -
传感器融合
目的:我们需要得到机器人运动的姿态信息,三个轴的角度以及角速度。本文大纲:1、传感器相关模型 2、坐标变换 3、经验型卡尔曼数据融合4、姿态解算流程 5、DMP 6、数据融合效果 本文出处:http://blog.csdn.net/haishaoli/article/details/52965457本文内容:姿态解算总转载 2017-09-25 20:30:41 · 2763 阅读 · 0 评论 -
最小二乘法及其拟合
最小二乘法的相关原理及其拟合翻译 2017-09-10 11:55:01 · 5074 阅读 · 0 评论 -
矩阵的求导
复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix。 x is a column vector, A is a matrixd(A∗x)/dx=A d(xT∗A)/dxT=A d(xT∗A)/dx=AT d(xT∗A∗x)/dx=xT(AT+A) pract转载 2017-10-07 13:07:26 · 988 阅读 · 0 评论