OpenCV人脸识别应用及代码

1. OpenCV简介
  OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。

2.基本函数及使用方法

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 读取图像
frame = cv2.imread('C:\\Users\\&\\Pictures\\hhh.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# 使用人脸识别模型检测人脸
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)

# 在图像中标记人脸
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

# 显示图像
cv2.imshow('Image', frame)
cv2.waitKey(0)
cv2.destroyAllWindows()
                        
原文链接:https://blog.csdn.net/weixin_48331187/article/details/132885659

3.人脸识别步骤

人脸识别分为:数据收集和预处理、训练模型、人脸识别三个步骤。

(一)数据收集
 (1)下载数据集

     本次用的数据集是opencv给出的教程里面的第一个数据集:The AT&T Facedatabase。又称ORL人脸数据库,照片在不同时间、不同光照、不同表情(睁眼闭眼、笑或者不笑)、不同人脸细节(戴眼镜或者不戴眼镜)下采集。所有的图像都在一个黑暗均匀的背景下采集的,正面竖直人脸(有些有有轻微旋转)。

(2)准备识别人脸的数据集

将数据集存储在OpenCV工程文件夹下即可,方便程序调用。

(3)读取图片查看效果。

#导入模块
import cv2 as cv
#读取图片
img=cv.imread('lena.jpg') #路径中不能有中文,否则加载图片失败
#显示图片
cv.imshow('read_img',img)
#等待键盘输入 单位毫秒  传入0 则就是无限等待
cv.waitKey(3000)
#释放内存  由于OpenCV底层是C++编写的
cv.destroyAllWindows()

(二)数据预处理

(1)图片灰度转换

#将图片灰度转换
gray_img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
cv.imshow('gray_img',gray_img)
#保存图片
cv.imwrite('gray_lena.jpg',gray_img)
cv.waitKey(0)
cv.destroyAllWindows()

(2)绘制矩形

img=cv.imread('lena.jpg')
#左上角的坐标是(x,y) 矩形的宽度和高度(w,h)
x,y,w,h=100,100,100,100
cv.rectangle(img,(x,y,x+w,y+h),color=(0,255,255),thickness=3) #BGR
#绘制圆center元组指圆点的坐标  radius:半径
x,y,r=200,200,100
cv.circle(img,center=(x,y),radius=r,color=(0,0,255),thickness=2)
#显示图片
cv.imshow('rectangle_img',img)
cv.waitKey(0)
cv.destroyAllWindows()

(三)基于图片及视频的人脸检测

(1)单张人脸检测

def face_detect_demo():
    #将图片转换为灰度图片
    gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    #加载特征数据
    face_detector=cv.CascadeClassifier('C:/Users/maohaofei/AppData/Local/Programs/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
    faces=face_detector.detectMultiScale(gray)
    for x,y,w,h in faces:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,255,0),thickness=2)
    cv.imshow('result',img)
#加载图片
img=cv.imread('lena.jpg')
face_detect_demo()
cv.waitKey(0)
cv.destroyAllWindows()

(2)多张人脸检测

import cv2 as cv
def face_detect_demo():
    #将图片灰度
    gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    #加载特征数据
    face_detector = cv.CascadeClassifier(
        'C:/Users/maohaofei/AppData/Local/Programs/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
    faces = face_detector.detectMultiScale(gray)
    for x,y,w,h in faces:
        print(x,y,w,h)
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=2)
    #显示图片
    cv.imshow('result',img)

#加载图片
img=cv.imread('face3.jpg')
#调用人脸检测方法
face_detect_demo()
cv.waitKey(0)
cv.destroyAllWindows()

(3)检测视频中的人脸

import cv2 as cv
def face_detect_demo(img):
    #将图片灰度
    gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    #加载特征数据
    face_detector = cv.CascadeClassifier(
        'C:/Users/maohaofei/AppData/Local/Programs/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
    faces = face_detector.detectMultiScale(gray)
    for x,y,w,h in faces:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv.circle(img,center=(x+w//2,y+h//2),radius=(w//2),color=(0,255,0),thickness=2)
    cv.imshow('result',img)
#读取视频
cap=cv.VideoCapture('video.mp4')
while True:
    flag,frame=cap.read()
    print('flag:',flag,'frame.shape:',frame.shape)
    if not flag:
        break
    face_detect_demo(frame)
    if ord('q') == cv.waitKey(2):
        break
cv.destroyAllWindows()
cap.release()

注:视频检测人脸程序会一直运行,如需终止可按Q键。

(四)人脸数据训练及识别

(1)训练数据

opencv中的face有专门的训练方式,对每个参考图像计算LBPH,得到一个向量。每个人脸都是整个向量集中的一个点

import os
import cv2
import sys
from PIL import Image
import numpy as np
def getImageAndLabels(path):
    facesSamples=[]
    ids=[]
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    #检测人脸
    face_detector = cv2.CascadeClassifier(
        'C:/Users/maohaofei/AppData/Local/Programs/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')

    #遍历列表中的图片
    for imagePath in imagePaths:
        #打开图片
        PIL_img=Image.open(imagePath).convert('L')
        #将图像转换为数组
        img_numpy=np.array(PIL_img,'uint8')
        faces = face_detector.detectMultiScale(img_numpy)
        #获取每张图片的id
        id=int(os.path.split(imagePath)[1].split('.')[0])
        for x,y,w,h in faces:
            facesSamples.append(img_numpy[y:y+h,x:x+w])
            ids.append(id)
    return facesSamples,ids

if __name__ == '__main__':
    #图片路径
    path='./data/jm/'
    #获取图像数组和id标签数组
    faces,ids=getImageAndLabels(path)
    #print(faces)
    print(ids)
    #获取训练对象
    recognizer=cv2.face.LBPHFaceRecognizer_create()
    recognizer.train(faces,np.array(ids))
    #保存文件
    recognizer.write('trainer/trainer.yml')

(2)人脸识别

import cv2
import numpy as np
import os
#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
#准备识别的图片
img=cv2.imread('./data/jm/3.pgm')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
face_detector = cv2.CascadeClassifier(
    'C:/Users/maohaofei/AppData/Local/Programs/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
faces = face_detector.detectMultiScale(gray)
for x,y,w,h in faces:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
    #人脸识别
    id,confidence=recogizer.predict(gray[y:y+h,x:x+w])
    print('标签id:',id,'置信评分:',confidence)
cv2.imshow('result',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

不积跬步,无以至千里。每天进步一点点,加油↖(^ω^)↗!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值