1 动力学方程的建立
2 微分方程到框图
3 第一次仿真
4 框图与m文件的互动
1 动力学方程的建立
蹦极跳的动力学方程,是按照牛顿运动定律建立的,分析蹦极人的受力,包括重力 m g mg mg、阻力 f f f、绳子拉力 F F F,以上各力的矢量和等于 m x ′ ′ m{x}'' mx′′。
其中,阻力采用一次阻尼和二次阻尼联合模型,即 f = a 1 x ′ + a 2 ∣ x ′ ∣ x ′ f=a_1x'+a_2|x'|x' f=a1x′+a2∣x′∣x′绳子的拉力采用分段函数模型,蹦极绳长度为 L L L;蹦极绳仅在蹦极人位移距离超过绳长的时候起拉力作用,拉力系数为 k k k
F = { k ( x − L ) x > L 0 x ≤ L F = \begin{cases} k(x-L) & x>L \\ 0 & x\leq L \end{cases} F={
k(x−L)0x>Lx≤L以上函数中, x x x为蹦极人坐标,取向下为正,并取原点为蹦极人起跳位置,即 x ( 0 ) = 0 x(0)=0 x(0)=0;本项目暂时不考虑蹦极人的起跳速度,即认为 x ′ ( 0 ) = 0 x'(0)=0 x′(0)=0;。
最终建立的蹦极跳的动力学微分方程为 m x ′ ′ = m g − a 1 x ′ − a 2 x ′ ∣ x ′ ∣ − F (1) mx''=mg-a_1x'-a_2x'|x'|-F \tag{1} mx