一、引言
中医舌诊作为传统中医诊断的重要组成部分,长期以来一直被广泛应用于疾病的早期发现与判断。舌苔是中医诊断中一个重要的生理表现,能够反映出身体的健康状况。通过观察舌头的形态、颜色、质地、舌苔的厚薄、色泽等特征,中医医生能够推测出人体的阴阳失衡、脏腑功能异常等疾病的表现。然而,传统的舌诊方法受限于医生的经验和视觉能力,存在一定的主观性和误诊风险。
随着深度学习技术的发展,计算机视觉的应用在医学诊断中得到了广泛应用,舌诊辅助系统也逐步成为现实。本文将介绍基于YOLOv8的中医舌苔诊断辅助系统,结合图形用户界面(UI)展示舌苔的诊断过程,能够辅助医生快速、准确地进行舌苔分析,提供客观的数据支持。我们将详细介绍如何使用YOLOv8进行舌苔图像的识别与分析,如何通过UI界面展示检测结果,以及如何构建和优化模型等内容,并给出完整的代码实现。
二、系统架构与技术选型
2.1 系统架构
中医舌苔诊断辅助系统主要由以下几个模块组成:
- 数据采集与预处理:采集舌苔图像并进行预处理,包括图像清晰度增强、尺寸调整、去噪等操作。
- YOLOv8目标检测:使用YOLOv8模型对舌苔进行目标检测,识别舌苔的特征区域。