**题目描述**
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。
由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。
方法一:
排序,如果有数字超过数组长度一般的数字的话,排序后一定是中间的那个数字。
时间复杂度:O(nlogn)
空间复杂度O(1)
import java.util.*;
public class Solution {
public int MoreThanHalfNum_Solution(int [] array) {
Arrays.sort(array);
int mid = array.length/2 , num = 0;
for(int i = 0 ; i < array.length ; i++) if(array[mid] == array[i]) num++;
return num > mid ? array[mid] : 0;
}
}
方法二:
通过HashMap记录数组中每个数字出现的次数
时间复杂度:O(n)
空间复杂度:O(n)
import java.util.*;
public class Solution {
public int MoreThanHalfNum_Solution(int [] array) {
if(array.length == 0 || array == null) return 0;
HashMap<Integer,Integer> map = new HashMap<>();
for(int i = 0 ; i < array.length ; i++) {
map.put(array[i] , map.getOrDefault(array[i] , 0) + 1);
}
for(Map.Entry<Integer , Integer> entry : map.entrySet() ) {
if(entry.getValue() > array.length/2) return entry.getKey();
}
return 0;
}
}
方法三:
利用partition()函数获得某一随机数字,其余数字按大小排在该数字的左右。若该数字下标刚好为n/2,则该数字即为所求数字;若小于n/2,则在右边部分继续查找;反之,左边部分查找。
时间复杂度:O(n)
空间复杂度:O(1)
public class Solution {
public int MoreThanHalfNum_Solution(int [] array) {
if(array.length == 0 || array == null) return 0;
int lo = 0 , hi = array.length-1 , mid = array.length >> 1;
int index = partition(array , lo , hi);
while(index != mid) {
if(index > mid) index = partition(array , lo , index-1);
if(index < mid) index = partition(array , index+1 , hi);
}
int res = array[index];
return countTimes(array,res) > mid ? res : 0;
}
private int partition(int[] array , int lo , int hi) {
int k = array[lo];
int i = lo , j = hi+1;
while(i < j) {
while(i < hi && array[++i] <= k) ; //注意这里需要array[++i] <= k,不能array[++i] < k ,否则会超时
while(j > lo && array[--j] >= k) ;
if(i >= j) break;
swap(array , i , j);
}
swap(array , lo , j);
return j;
}
private void swap(int[] arr , int i , int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private int countTimes(int[] arr , int num) {
int times = 0;
for(int i : arr) {
if(i == num) times++;
}
return times;
}
}
while(i < hi && array[++i] <= k) ;
while(j > lo && array[–j] >= k) ;
需要array[++i] <= k而不是array[++i] < k , array[–j] >= k而不是array[–j] > k
如果没有等号的话,说明当array[i] == k时,i和j也会交换,当k在array中很多时,会出现很多次没有必要的交换,所以会造成超时