在当今社会,人工智能的应用场景愈发广泛,如小爱同学、天猫精灵等 AI 服务已深入人们的生活。随着人工智能时代的来临,AI 服务器也开始在社会各行业发挥重要作用。那么,AI 服务器与传统服务器相比,究竟有何独特之处?为何 AI 服务器能在人工智能时代中逐渐取代普通服务器,成为主流呢?
01
AI 服务器与传统服务器的区别
AI 服务器和传统服务器之间有显著的区别。
AI 服务器是一种专门设计用于执行人工智能、机器学习(ML)、深度学习(DL)等计算密集型任务的高性能服务器。它可以通过收集数据、分析数据和模拟数据来学习如何有效地运行服务器,也可以根据不同的应用程序和用户请求来调整服务器的性能,从而提供更好的服务器性能。
而传统服务器虽然也可以处理大量数据,但是需要人工干预来提高服务器性能。
从服务器的硬件架构来看,AI 服务器通常配备有高效能的中央处理器(CPU)、图形处理器(GPU)、张量处理器(TPU)或专用的 AI 加速器,以及大量的内存和存储空间。在异构方式上,AI 服务器可以为 CPU+GPU、CPU+FPGA、CPU+TPU、CPU+ASIC 或 CPU+多种加速卡。
目前,产品中最常见的是 CPU+多块 GPU 的方式。具体的设计和配置可以根据需要进行大量并行处理的具体任务来进行调整。
传统服务器主要以 CPU 为算力提供者,但是在运作的过程中需要引入大量分支跳转中断处理,这使得 CPU 的内部结构复杂,并不能满足 AI 时代的需求。
AI 服务器的主要优势:
大数据处理:AI 服务器能够处理和分析大量数据,这是训练 AI 和 ML 模型的关键。
并行计算:由于 AI 和 ML 算法需要对大量数据进行复杂的计算,AI 服务器通常使用可以并行处理大量数据的硬件,如 GPU。
存储和内存:AI 服务器通常具有大量的存储空间和内存,以便存储和处理大量的数据。
网络能力:AI 服务器需要高速和低延迟的网络连接,以便快速传输大量的数据。
事实上,这也正是大模型热潮之后,AI 服务器抢购潮涌现的原因所在