数据包络分析
原理
数据包络分析(DEA)是一种基于线性规划的多投入多产出的效率评价方法。它以决策单元(DMU)的投入和产出数据为基础,通过构建生产可能集,确定生产前沿面,来衡量决策单元的相对效率。其基本思想是,将每个决策单元视为一个生产系统,通过比较各个决策单元与生产前沿面的距离,判断其是否有效。如果一个决策单元位于生产前沿面上,说明它在当前投入水平下实现了最大产出,是相对有效的;反之,如果决策单元在生产前沿面下方,则表明其存在效率改进的空间。
实现路径
- 确定决策单元和指标体系:明确需要评价的决策单元,例如不同的企业、部门或项目等,并确定相应的投入指标和产出指标。投入指标是决策单元在生产过程中所消耗的资源,如人力、物力、财力等;产出指标则是决策单元的生产成果,如产量、利润、服务质量等。
- 构建 DEA 模型:常用的 DEA 模型有 CCR 模型和 BCC 模型。CCR 模型假设规模报酬不变,主要用于评价决策单元的总体效率;BCC 模型则假设规模报酬可变,能够进一步将总体效率分解为纯技术效率和规模效率。根据研究目的和数据特点选择合适的模型。
- 数据收集与整理:收集各决策单元的投入和产出数据,并进行必要的预处理,如数据标准化等,以确保数据的一致性和可比性。
- 求解模型:将收集到的数据代入所选的 DEA 模型中,通过线性规划方法求解模型,得到每个决策单元的效率值。效率值的取值范围在 0 到 1 之间,值为 1 表示该决策单元是相对有效的,值小于 1 则表示存在效率改进的余地。
- 结果分析:根据计算得到的效率值,对决策单元进行排序和分析。可以进一步分析无效决策单元的投入冗余和产出不足情况,找出改进的方向和重点,为决策提供依据。
Python 实现代码
from pymoo.model.problem import Problem
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.factory import get_sampling, get_crossover, get_mutation
from pymoo.optimize import minimize
import numpy as np
class DEAProblem(Problem):
def __init__(self, X, Y):
self.X = X
self.Y = Y
n_dmu, n_inputs = X.shape
n_dmu, n_outputs = Y.shape
super().__init__(n_var=n_dmu, n_obj=1, n_constr=0, xl=0, xu=1)
def _evaluate(self, x, out, *args, **kwargs):
X = self.X
Y = self