回归评估指标:MSE、R2

本文介绍了如何使用均方误差(MSE)、均方根误差(RMSE)和R²分数来评估机器学习中回归任务的预测性能。通过具体示例展示了这些指标的计算方法,并解释了它们的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

{y_{i}}:原数据标签

\hat{y_{i}}:预测结果

\bar{y_{i}}:平均值

1、均方误差:MSE(Mean Squared Error):

2、均方根误差:RMSE

对MSE开平方

3、R2(R-Square):

注:R2一般取(0,1),0表示拟合效果不好。如果出现负值,首先考虑数据集是否有问题,如果是集成模型,考虑若学习模型是否不足。

代码实现:

from sklearn.metrics import mean_squared_error  # 均方误差
from sklearn.metrics import r2_score  # R square

print("均方误差 MSE= ", mean_squared_error(y_test, y_pred))  # 均方误差MSE
print("均方根误差 RMSE= ", sqrt(mean_squared_error(y_test, y_pred)))  # 均方根误差 RMSE
print("R^2= ", r2_score(y_test, y_pred))  # r2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值