机器学习实战-PCA主成分分析、降维

本文介绍了PCA(主成分分析)作为降维技术的应用,阐述了PCA的基本原理,如何通过协方差矩阵寻找数据的主要成分。文章从统计学的基础概念如均值、方差和协方差出发,解释了协方差矩阵及其与PCA的关系,强调了PCA目标是减少维度间的相关性并最大化方差。此外,还讨论了特征值和特征向量在PCA中的作用,指出选取最大特征值对应的特征向量可以实现有效的数据降维。
摘要由CSDN通过智能技术生成

降维技术

很多时候,原始数据是多维度的,在计算的时候会带来很大的资源开销。而且数据本身有很多的冗余,我们可以去除一些不必要的特征,使得数据简化,降低算法的计算开销。因此需要利用降维技术来实现。

PCA(Principal Component Analysis)主成分分析

在PCA中,数据从原来的坐标系转化到新的坐标系中。当然这里新的坐标系也不是随便设定的,而是应该根据数据本身的特征来设计。通常第一个新坐标轴选择的是原始数据方差最大的方向,第二个坐标轴是与第一个坐标轴正交且具有最大方差的方向。这句话的意思就是,第二个选取的方向应该和第一个方向具有很弱的相关性。如果有很强的相关性的话,那么选其中一个就ok了。然后依此类推,选出后面的方向,其数目应该和原始数据的特征数目一致。
通常我们会发现,大部分的方差就集中在前面几个方向中,因此可以忽略后面的方向,达到降维的效果。
然后书上有这么一段话,介绍实现该过程的伪代码。
图1
看不懂这里的协方差矩阵是啥,为什么是这样子的?
只好从初中数学的方差开始学习了。。。

基本统计学概念

统计学里有几个基本的概念,有均值,方差,标准差等等。比如有一个含有n个样本的集合: X={ x1,...,xn}
那么,
均值: X¯¯¯=ni=1xin
标准差: s=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值