【转】几种经典的滤波算法

以下是十种经典滤波算法的简介,后面有C实现程序。我只看了简介部分,程序部分未验证

1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点
无法抑制那种周期性的干扰
平滑度差

2、中位值滤波法
A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜

3、算术平均滤波法
A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM

4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM

6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
比较浪费RAM

7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)本次采样值+a上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号

8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
B、优点:
适用于有较大纯滞后时间常数的对象
和采样周期较短的系统
C、缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
不能迅速反应系统当前所受干扰的严重程度,滤波效果差

9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
B、优点:
对于变化缓慢的被测参数有较好的滤波效果,
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
C、缺点:
对于快速变化的参数不宜
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

10、限幅消抖滤波法
A、方法:
相当于“限幅滤波法”+“消抖滤波法”
先限幅,后消抖
B、优点:
继承了“限幅”和“消抖”的优点
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
C、缺点:
对于快速变化的参数不宜

第11种方法:IIR 数字滤波器

A. 方法:
确定信号带宽, 滤之。
Y(n) = a1*Y(n-1) + a2*Y(n-2) + … + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + … + bk*X(n-k)

B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab)
C. 缺点:运算量大。
 

//———————————————————————

软件滤波的C程序样例

10种软件滤波方法的示例程序

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

1、限副滤波

/*  A值可根据实际情况调整
    value为有效值,new_value为当前采样值  
    滤波程序返回有效的实际值  */
#define A 10

char value;

char filter()
{
   char  new_value;
   new_value = get_ad();
   if ( ( new_value - value > A ) || ( value - new_value > A )
      return value;
   return new_value;

}

2、中位值滤波法

/*  N值可根据实际情况调整
    排序采用冒泡法*/
#define N  11

char filter()
{
   char value_buf[N];
   char count,i,j,temp;
   for ( count=0;count   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j   {
      for (i=0;i      {
         if ( value_buf>value_buf[i+1] )
         {
            temp = value_buf;
            value_buf = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   return value_buf[(N-1)/2];
}     

3、算术平均滤波法

#define N 12

char filter()
{
   int  sum = 0;
   for ( count=0;count   {
      sum + = get_ad();
      delay();
   }
   return (char)(sum/N);
}

4、递推平均滤波法(又称滑动平均滤波法)

#define N 12 

char value_buf[N];
char i=0;

char filter()
{
   char count;
   int  sum=0;
   value_buf[i++] = get_ad();
   if ( i == N )   i = 0;
   for ( count=0;count      sum = value_buf[count];
   return (char)(sum/N);
}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

#define N 12

char filter()
{
   char count,i,j;
   char value_buf[N];
   int  sum=0;
   for  (count=0;count   {
      value_buf[count] = get_ad();
      delay();
   }
   for (j=0;j   {
      for (i=0;i      {
         if ( value_buf>value_buf[i+1] )
         {
            temp = value_buf;
            value_buf = value_buf[i+1]; 
             value_buf[i+1] = temp;
         }
      }
   }
   for(count=1;count      sum += value[count];
   return (char)(sum/(N-2));
}

6、限幅平均滤波法
/*
*/
略 参考子程序1、3

7、一阶滞后滤波法

/* 为加快程序处理速度假定基数为100,a=0~100 */

#define a 50

char value;

char filter()
{
   char  new_value;
   new_value = get_ad();
   return (100-a)*value + a*new_value; 
}

8、加权递推平均滤波法

/* coe数组为加权系数表,存在程序存储区。*/

#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()
{
   char count;
   char value_buf[N];
   int  sum=0;
   for (count=0,count   {
      value_buf[count] = get_ad();
      delay();
   }
   for (count=0,count      sum += value_buf[count]*coe[count];
   return (char)(sum/sum_coe);
}

9、消抖滤波法

#define N 12

char filter()
{
   char count=0;
   char new_value;
   new_value = get_ad();
   while (value !=new_value);
   {
      count++;
      if (count>=N)   return new_value;
       delay();
      new_value = get_ad();
   }
   return value;    
}

10、限幅消抖滤波法
/*
*/
略 参考子程序1、9

11、IIR滤波例子

int BandpassFilter4(int InputAD4)
{
int ReturnValue;
int ii;
RESLO=0;
RESHI=0;
MACS=*PdelIn;
OP2=1068; //FilterCoeff4[4];
MACS=*(PdelIn+1);
OP2=8; //FilterCoeff4[3];
MACS=*(PdelIn+2);
OP2=-2001;//FilterCoeff4[2];
MACS=*(PdelIn+3);
OP2=8; //FilterCoeff4[1];
MACS=InputAD4;
OP2=1068; //FilterCoeff4[0];
MACS=*PdelOu;
OP2=-7190;//FilterCoeff4[8];
MACS=*(PdelOu+1);
OP2=-1973; //FilterCoeff4[7];
MACS=*(PdelOu+2);
OP2=-19578;//FilterCoeff4[6];
MACS=*(PdelOu+3);
OP2=-3047; //FilterCoeff4[5];
*p=RESLO;
*(p+1)=RESHI;
mytestmul<<=2;
ReturnValue=*(p+1);
for (ii=0;ii<3;ii++)
{
DelayInput[ii]=DelayInput[ii+1];
DelayOutput[ii]=DelayOutput[ii+1];
}
DelayInput[3]=InputAD4;
DelayOutput[3]=ReturnValue;

// if (ReturnValue<0)
// {
// ReturnValue=-ReturnValue;
// }
return ReturnValue;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值