Climbing Stairs (E)
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
题意
给定一个高度为n的楼梯,每次可以向上走1层或2层,统计可以登顶的方法的个数。
思路
动态规划:dp[i]代表能够走到第i层的方法的个数,而第i层只可能由第i-1层走1层到达,或由第i-2层走2层到达,所以有 d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i]=dp[i-1]+dp[i-2] dp[i]=dp[i−1]+dp[i−2]。
递归:从当前层i走到最高层的方法数等于从i+1层走到最高层的方法数加上i+2层走到最高层的方法数。
代码实现 - 动态规划
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n];
dp[0] = 1;
for (int i = 1; i < n; i++) {
dp[i] = dp[i - 1] + (i > 1 ? dp[i - 2] : 1);
}
return dp[n - 1];
}
}
代码实现 - 递归
class Solution {
public int climbStairs(int n) {
int[] ways = new int[n + 1]; // 避免重复运算
return findWays(0, n, ways);
}
// 返回从第i层走到第n层的方法数
private int findWays(int i, int n, int[] ways) {
if (i == n) {
return 1;
}
if (i > n) {
return 0;
}
if (ways[i] > 0) {
return ways[i];
}
ways[i] = findWays(i + 1, n, ways) + findWays(i + 2, n, ways);
return ways[i];
}
}