用树状数组,lowbit函数
令这棵树的结点编号为C1,C2...Cn。令每个结点的值为这棵树的值的总和,那么容易发现:
C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
...
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
这里有一个有趣的性质:
设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,
所以很明显:Cn = A(n – 2^k + 1) + ... + An
算这个2^k有一个快捷的办法,定义一个函数如下即可:
1 2 3 | intlowbit(intx){ returnx&(x^(x–1)); } |
利用机器补码特性,也可以写成:
1 2 3 | intlowbit(intx){ returnx&(-x); } |
描述
南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的。
小工是南将军手下的军师,南将军经常想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧。
南将军的某次询问之后士兵i可能又杀敌q人,之后南将军再询问的时候,需要考虑到新增的杀敌数。
-
输入
-
只有一组测试数据
第一行是两个整数N,M,其中N表示士兵的个数(1<N<1000000),M表示指令的条数。(1<M<100000)
随后的一行是N个整数,ai表示第i号士兵杀敌数目。(0<=ai<=100)
随后的M行每行是一条指令,这条指令包含了一个字符串和两个整数,首先是一个字符串,如果是字符串QUERY则表示南将军进行了查询操作,后面的两个整数m,n,表示查询的起始与终止士兵编号;如果是字符串ADD则后面跟的两个整数I,A(1<=I<=N,1<=A<=100),表示第I个士兵新增杀敌数为A.
输出
- 对于每次查询,输出一个整数R表示第m号士兵到第n号士兵的总杀敌数,每组输出占一行 样例输入
-
5 6 1 2 3 4 5 QUERY 1 3 ADD 1 2 QUERY 1 3 ADD 2 3 QUERY 1 2 QUERY 1 5
样例输出
-
6 8 8 20
-
#include<stdio.h> #include<string.h> using namespace std; int m,n,w,a[1000020],x,y; int lowbit(int i) { return i&(-i); } void modify(int i,int j) { while(i<=n) { a[i]+=j; i+=lowbit(i); } } int sum(int k) { int num=0; while(k>0) { num+=a[k]; k-=lowbit(k); } return num; } int main() { scanf("%d %d",&n,&m); for(int i=1;i<=n;i++) { scanf("%d",&w); modify(i,w); } char b[100020]={0}; while(m--) {while(scanf("%s",b)!=EOF) { scanf("%d %d",&x,&y); if(b[0]=='Q') { printf("%d\n",sum(y)-sum(x-1)); } if(b[0]=='A') modify(x,y); } } }