2020/3/15 打卡
题目
给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合。
你可以假设二维矩阵的四个边缘都被水包围着。
找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为0。)
示例 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
对于上面这个给定矩阵应返回 6。注意答案不应该是11,因为岛屿只能包含水平或垂直的四个方向的‘1’。
示例 2:
[[0,0,0,0,0,0,0,0]]
对于上面这个给定的矩阵, 返回 0。
注意: 给定的矩阵grid 的长度和宽度都不超过 50。
思路
这题很像之前看过的一道题,200. 岛屿数思路一样,之前是独立小岛的个数,而这次是 需要计算最大的岛屿的面积值,增加的考虑是对面积值的计算。
思路是更为简单的,直接DFS求解即可,非常典型的解法。
(1)从每个岛屿开始搜索,
(2)寻找连在一起的岛屿, 更新最大值, 并标记访问过的岛屿
(3)求所有岛屿中的最大值
细节:仍然可以采用原位修改的方式避免记录visited的开销。我们的做法是将grid[i][j] = 0,需要注意的是,我们无需重新将grid[i][j] = 1,因为题目没有这个要求。另外如果你这么做的话,也会产生bug。
代码
# 这里 使用dfs的方法对四个方向 遍历,并统计岛屿大小。
# 时复复杂度都是O(m+n)
def maxArea(grid):
# 设定大的 边界条件, 这里注意一定要先对行做判别,再对列判别。
m=len(grid)
if m==0:
return 0
n=len(grid[0])
if n==0:
return n
# 从一个位置点 往四周进行dfs操作吧
def dfs(i,j):
# dfs 递归的两个停止条件
if i<0 or i>=m or j<0 or j>=n:
return 0
if grid[i][j]==0:
return 0
# 防止重复走,要设置为0
grid[i][j] = 0
# 正常的往四周的扩展 ,并做可行扩展长度的衡量
top=dfs(i+1,j)
bottom=dfs(i-1,j)
left=dfs(i,j-1)
right=dfs(i,j+1)
# 把扩展结果,进行归并计算,每个dfs其实都是可以得到对应扩展的
return 1+sum([top,bottom,left,right])
# 外部dfs调用(对每个起点位置 都做尝试),ans存放统计的目标最大值。
ans=0
for i in range(m):
for j in range(n):
ans=max(ans,dfs(i,j))
return ans