深度学习
文章平均质量分 85
马飞飞
乐于分享,痴迷技术
展开
-
Ubuntu下安装tensorflow-gpu版(cuda8+cudnn5)
首先说明下:GPU驱动有很多匹配方案,匹配方案可以是tensorflow 1.5+cuda 9+cudnn7或者tensorflow1.4+cuda 8+cudnn6或者tensorflow1.2+cuda 8+cudnn5,安装时从这些方案选一个即可,这里举例tensorflow1.2+cuda 8+cudnn5方案。1.下载驱动(1)下载cuda 8地址为https:/...原创 2018-03-28 11:34:16 · 1300 阅读 · 2 评论 -
深度学习调试经验
本文是一片译文,从四个方面来提出37条神经网络调试总结,这四个方面分别是: 数据集、数据增强、具体实现、训练。数据集1. 检查你的输入数据检查馈送到网络的输入数据是否正确。例如,我不止一次混淆了图像的宽度和高度。有时,我错误地令输入数据全部为零,或者一遍遍地使用同一批数据执行梯度下降。因此打印/显示若干批量的输入和目标输出,并确保它们正确。2. 尝试随机输入尝试传递随机数而不是...翻译 2019-03-27 20:03:31 · 1305 阅读 · 0 评论 -
目标检测模型之R-CNN
1.R-CNN是最为经典的方式,对应于下图,具体来说R-CNN的算法框架就是一下三个过程,分别是提取候选窗口(又叫感兴趣区,不同于以往简单的滑窗提取方式,这里是使用一种更加简洁的Selective Search方式)、将候选窗口统一规格处理并输入CNN网络提取特征(进行统一规格的是因为网络的全连接层需要输入图像尺寸是固定的,而卷积层其实是不需要的)、用提取出的特征做分类和位置矫正任务(这里是依据,...原创 2019-03-02 19:46:35 · 541 阅读 · 0 评论 -
长短时记忆网络(LSTM)
LSTM的引入*虽然RNN的训练过程和多层神经网络差异不大,写程序较简单,但是Rnn的训练是十分困难的,而且很难学到长期依赖,因为当对参数进行求导更新时,式子中会使用链式法则不断乘积和求导,如在对参数w更新的式子中,会需要使用链式法则,这样当对一个变量针对变量函数求导时,会得到一个雅可比矩阵,这样就会出现两个问题。 [1].如果雅可比阵中有较小数时,经过多次矩阵相乘,梯度值会快速...原创 2018-11-25 00:43:32 · 11039 阅读 · 1 评论 -
深度学习-RNN注意力模型
简介*注意力模型来源于人脑对事物的观察,由于人脑在观察事物时,人眼睛聚焦的位置只是很小的一块,这时人脑会聚焦在这一小块图案上,此时,人脑对图的关注并不是均衡的,是有权重区别的。*注意力模型多用于对图片的文字说明,对于图片的描述,我们接下来会介绍两种类型的图片描述方式: [1]传统图像描述 [2]注意力模型传统图像描述*传统方式是类似...原创 2018-11-24 12:48:46 · 2989 阅读 · 0 评论 -
深度学习 - 对神经网络本质的理解(层结构和行为角度)
先综述下,神经网络做分类等问题的核心原理是使用升维/降维、 放大/缩小、旋转、平移、弯曲这5大类操作完成扭曲变换,最终能在扭曲后的空间找到轻松找到一个超平面分割空间。接下来介绍的内容有: 1.神经网络每层都在做什么 2.神经网络如何完成识别任务 ...原创 2018-09-11 23:39:49 · 4278 阅读 · 3 评论 -
深度学习 - 解决局部最优点问题的方案
问题描述一般的梯度下降方法寻找的是loss function的局部极小值,而我们想要全局最小值。如下误差曲面图所示,我们希望loss值可以降低到右侧深蓝色的最低点,但loss有可能“卡”在左侧的局部极小值中,也就是图中红线所走的路径。方案为了防止卡到'局部最优点',我们有以下几个方法: [1]使用随机梯度下降代替真正的梯度下降。可以这样理解,每次针对单个数据样例进行摸...原创 2018-09-11 23:30:11 · 19665 阅读 · 0 评论 -
深度学习 - 对过拟合和欠拟合问题的处理
我们以图像形式说明下欠拟合、正常拟合、过拟合的场景,左图为欠拟合,此时算法学习到的数据规律较弱,有较差的预测效果,中图为正常拟合的形态,模型能够兼顾预测效果和泛化能力,右图是过拟合的情形,此时模型对训练集有较好的预测效果,但是因为其过度拟合于训练数据,所以对未见过的数据集有较差的预测效果,也就是我们通常说的低泛化能力。欠拟合问题欠拟合问题易于解决,其基本方式有: [1]增...原创 2018-09-11 23:27:18 · 4637 阅读 · 0 评论 -
生成对抗网络(GAN)教程 - 多图详解
一.生成对抗网络简介1.生成对抗网络模型主要包括两部分:生成模型和判别模型。 生成模型是指我们可以根据任务、通过模型训练由输入的数据生成文字、图像、视频等数据。 [1]比如RNN部分讲的用于生成奥巴马演讲稿的RNN模型,通过输入开头词就能生成下来。 [2]或者由有马赛克的图像通过模型变成清晰的图像,第一张是真实,第四张是合成的。 ...原创 2018-08-30 14:14:03 · 99748 阅读 · 8 评论 -
卷积神经网络扩展 - Resnet网络简介
一.简介1.残差神经网络是2015年由微软研究院四位华人提出的,在Imgnet上夺冠的神经网络,它是有152层深的神经网络,在2015年的ILSVRC比赛中取到了3.5%错误率。Resnet能够达到152层的原因是引入了残差模块的概念,使用如下图的残差模块控制跳转来克服深层网络梯度消失的问题。2.创建残差模块的思路是:对于一个神经网络,随着我们增加网络深度时,会导致梯度消散问题,梯...原创 2018-08-31 10:41:40 · 2377 阅读 · 0 评论 -
迁移学习系列 - 有监督->无监督迁移
一.域对抗性模型1.域对抗方式应对于源场景是有监督的、目标场景是无监督的学习问题,如下图是从数据集MNIST到MNIST-IN的迁移应用,通过有监督的MNIST数据来实现对有背景MNIST-IN图片的数字识别。2.对于有标签到无标签的迁移问题,我们可以借用GAN的思想,构造下面的网络结构,创造这个模型的思路是: [1]首先构建一个CNN网络模...原创 2018-08-31 10:25:45 · 6880 阅读 · 0 评论 -
迁移学习系列 - 有->有监督迁移
一.Model fine-tuning方式1.Model fine-tuning模型是应对于源数据和目标数据都是有标签、且有大量源数据、少量目标数据的情况。最典型的例子是之前做狗种类识别竞赛时,用到的迁移方法,针对于训练集中每个狗只有100张左右训练图像的问题,我们使用的方法是: [1]使用别人训练好的用于1024个物种分类(相似域、不同任务...原创 2018-08-31 10:17:35 · 1025 阅读 · 0 评论 -
迁移学习系列 - 迁移学习简介
一.引入迁移学习1.迁移学习将在一个场景中学习到的知识迁移到另一个场景应用。 通过利用之前学到的知识来帮助完成新环境下任务的学习方法,这样能解决现有深度学习算法欠缺泛化能力、大量任务场景缺少标签数据的问题。下图是吴恩达预测的各种方法在商业上的应用成功度。2.使用迁移学习,我们可以去做以下任务。 [1]无人驾驶汽车 ...原创 2018-08-31 10:05:54 · 1533 阅读 · 0 评论 -
使用RL做Video Behavior Detection
paper:《Self-Adaptive Proposal Model for Temporal Action Detection based on Reinforcement Learning》背景1.任务描述:本paper用于视频行为检测任务,对于给定的视频,检测出视频中的可能产生运动的片段和行动的类别,传统的针对这一任务,我们常常分成两步的来解决: ...原创 2019-04-16 22:27:01 · 392 阅读 · 0 评论