我们以图像形式说明下欠拟合、正常拟合、过拟合的场景,左图为欠拟合,此时算法学习到的数据规律较弱,有较差的预测效果,中图为正常拟合的形态,模型能够兼顾预测效果和泛化能力,右图是过拟合的情形,此时模型对训练集有较好的预测效果,但是因为其过度拟合于训练数据,所以对未见过的数据集有较差的预测效果,也就是我们通常说的低泛化能力。
欠拟合问题
欠拟合问题易于解决,其基本方式有:
[1]增加迭代次数,使用更多的数据喂养模型,使得模型有更强的拟合能力。
[2]增加网络的深度和广度,增大神经网络的'容量',使得模型有更好的空间表示能力。
过拟合问题
在DNN中常用的解决过拟合方法有:
[1]早停策略。早停是指在使用交叉检验策略,每隔一定的训练次数观察训练集和验证集上数据的准确率,从而可以比较观察找到合适的训练次数,及时在下图红点出停止