深度学习 - 对过拟合和欠拟合问题的处理

我们以图像形式说明下欠拟合、正常拟合、过拟合的场景,左图为欠拟合,此时算法学习到的数据规律较弱,有较差的预测效果,中图为正常拟合的形态,模型能够兼顾预测效果和泛化能力,右图是过拟合的情形,此时模型对训练集有较好的预测效果,但是因为其过度拟合于训练数据,所以对未见过的数据集有较差的预测效果,也就是我们通常说的低泛化能力。

欠拟合问题

欠拟合问题易于解决,其基本方式有:      

[1]增加迭代次数,使用更多的数据喂养模型,使得模型有更强的拟合能力。      

[2]增加网络的深度和广度,增大神经网络的'容量',使得模型有更好的空间表示能力。

过拟合问题

在DNN中常用的解决过拟合方法有:

[1]早停策略。早停是指在使用交叉检验策略,每隔一定的训练次数观察训练集和验证集上数据的准确率,从而可以比较观察找到合适的训练次数,及时在下图红点出停止

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值