切片
slice,对list进行筛选生成新list
namelist = ['Bob', 'Jack', 'Tom', 'Harry', 'Green', 'Martin']
print namelist
print namelist[2:4]
print namelist[:4]
print namelist[-4:-2]
print namelist[-4:]
print namelist[:]
numlist = range(100)
print numlist[10:20:2]
print numlist[:20:3]
print numlist[::10]
output:
['Bob', 'Jack', 'Tom', 'Harry', 'Green', 'Martin']
['Tom', 'Harry']
['Bob', 'Jack', 'Tom', 'Harry']
['Tom', 'Harry']
['Tom', 'Harry', 'Green', 'Martin']
['Bob', 'Jack', 'Tom', 'Harry', 'Green', 'Martin']
[10, 12, 14, 16, 18]
[0, 3, 6, 9, 12, 15, 18]
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
总结:
- slice语法:[startIndex:endIndex:step],不包括endIndex
- 正向索引时startIndex omit则为第一个元素,stopIndex omit则包括剩余所有
- 逆向切片时startIndex omit则为第一个元素,stopIndex omit则包括剩余所有
- step默认为1,使用step默认值时,slice可缩略为[startIndex:endIndex]
注:slice适用于list,tuple是特殊list(不可变list),返回结果为tuple,字符串是特殊tuple(元素为字符tuple),返回结果为字符串
迭代
iteration,通过for...in来遍历collection
dict迭代
dict = {'Bob': 60, 'Jack': 80, 'Martin': 90}
print 'iter key'
for key in dict:
print key
print 'iter value'
for value in dict.itervalues():
print value
print 'iter key value'
for key, value in dict.iteritems():
print key, value
output:
iter key
Bob
Jack
Martin
iter value
60
80
90
iter key value
Bob 60
Jack 80
Martin 90
总结:
- 默认迭代key
- itervalues迭代value
- iteritems迭代key value
list迭代
list = ['Bob', 'Jack', 'Martin']
for value in list:
print value
for value in enumerate(list):
print value
for index, value in enumerate(list):
print index, value
points = [(1, 2), (3, 5), (5, 8)]
for x, y in points:
print x, y
output:
Bob
Jack
Martin
(0, 'Bob')
(1, 'Jack')
(2, 'Martin')
0 Bob
1 Jack
2 Martin
1 2
3 5
5 8
总结:
- enumerate(list)生成(索引,元素)二元组(tuple)的list
可迭代对象
from collections import Iterable
print isinstance(['a', 'b', 'c'], Iterable)
print isinstance(('a', 'b', 'c'), Iterable)
print isinstance('abc', Iterable)
print isinstance(123, Iterable)
output:
True
True
True
False
总结:
- 任何可迭代对象都可通过for...in迭代,可迭代对象类型为Iterable,对象是否可迭代可通过isinstance判断
列表生成式
list comprehension,列表生成式在迭代的基础上可根据一个list推导出另一个list,可通过条件表达式filter可迭代对象的元素
print [x * x for x in range(1, 11)]
print [x * x for x in range(1, 11) if x % 2 == 0]
print [m + n for m in "ABC" for n in 'XYZ']
dict = {'Bob': 60, 'Jack': 80, 'Martin': 90}
print [name + '=' + str(score) for name, score in dict.iteritems()]
print[name.lower() for name in dict]
output:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[4, 16, 36, 64, 100]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
['Bob=60', 'Jack=80', 'Martin=90']
['bob', 'jack', 'martin']
总结:
- list comprehension语法:[expression for...in condition],先执行for...in迭代获取元素,再执行condition过滤元素,最后执行expression,结果入list
- 迭代(for...in)可多层嵌套
生成器
generator,生成器与列表生成式区别:
- 列表生成式一次性生成出所有数据存放于list中
- 生成器定义一个算法,不生成数据,根据需要动态生成数据
创建生成器两种方法:
- 改造列表生成式:把列表生成式的[]改成()即可,优点简易,缺点只能创建简易算法生成器
- 改造函数:函数定义中包含yield,优点可创建复杂算法生成器,缺点复杂
改造列表生成式:
generator = (x * x for x in range(1, 11) if x % 2 == 0)
for elem in generator:
print elem
output:
4
16
36
64
100
改造函数:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
generator = fib(6)
for elem in generator:
print elem
output:
1
1
2
3
5
8
总结:
- 可改造列表生成式实现简易算法generator,也可改造函数实现复杂算法generator
- 通过列表生成式改造的generator,在迭代(for...in)过程中不断计算出下一元素,迭代(for...in)结束即generator结束
- 通过函数改造的generator,遇到return语句或者执行到函数体最后一行语句,即generator结束
- generator是可迭代对象,generator迭代(for...in)本质就是不断调用next直至generator结束
- 通过函数改造的generator和函数执行流程不一样,函数是顺序执行,遇到return语句或者执行到函数体最后一行语句就结束,因此函数一次性执行完毕,而通过函数改造的generator调用next时执行,遇到yield语句返回,再次调用next时从上次返回的yield语句处继续执行,直至generator结束