SQLite中的Btree索引

本文介绍了SQLite数据库中Btree索引的工作原理。Btree是一种数据结构,用于按排序顺序存储数据,提高数据库查询效率。在SQLite中,Btree用于建立索引,而B+tree用于存储实际记录,实现O(log(n))时间复杂度的搜索。通过索引,数据库可以更快地查找和访问数据,同时支持顺序搜索。
摘要由CSDN通过智能技术生成

当我们考虑数据库的性能时,首先想到的就是索引。在这里,我们将研究数据库索引如何在数据库上工作。请注意,此处的架构细节是根据SQLite 2.x数据库架构进行描述的。

 

什么是Btree?

Btree是一种数据结构,该数据结构按排序顺序将数据存储在其节点中。示例Btree表示如下。

Btree存储数据,以便每个节点都包含升序的键。这些键中的每个键都具有对另外两个子节点的引用。左侧子节点键值小于当前键值,右侧子节点键值大于当前键值。如果单个节点具有“n”个键,则它最多可以具有“n + 1”个子节点。

为什么在数据库中使用索引?

假设您需要在文件中存储数字列表,然后在该列表中搜索给定的数字。最简单的解决方案是将数据存储在数组中,并将新值附加到数组上。但是,如果需要检查数组中是否存在给定值,则需要一个接一个地搜索所有数组元素,并检查给定值是否存在。如果足够幸运,您可以在第一个元素中找到给定的值。在最坏的情况下,该值可能是数组中的最后一个元素。我们可以将这种最坏情况表示为需要O(n)的运算量。这意味着,如果您的数组大小最多为“n”,则需要进行“n”次搜索才能在数组中找到给定值。

如何减少此搜索时间?最简单的解决方案是对数组进行排序并使用二分搜索来找到值。每当您将值插入数组时,它都保持顺序存储。从数组中间选择一个值开始搜索。然后将所选值与搜索值进行比较。如果选择的值大于搜索值,则忽略数组的左侧,而在右侧搜索值,反之亦然。


二分搜索

在这里,我们尝试从已排序的数组3、6、8、11、15、18和18中搜索键15。如果您进行常规搜索,则自该元素位于第五位置以来,将需要五个单位的时间进行搜索。但是,在二分搜索中,只需要进行三个搜索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值