转https://www.hongweipeng.com/index.php/archives/709/
1.opencv3并不自带sift,fast等,需要额外安装。
2.cv2.drawMatches
这个函数在OpenCV 2.4.12
中不存在。3.0以后才提供。所以运行时得到这样的报错。
函数原型如下:
cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches1to2[, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]]) → outImg
-
img1 – 源图像1
-
keypoints1 –源图像1的特征点.
-
img2 – 源图像2.
-
keypoints2 – 源图像2的特征点
-
matches1to2 – 源图像1的特征点匹配源图像2的特征点[matches[i]] DMatch.
-
outImg – 输出图像具体由flags决定.
-
matchColor – 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机.
-
singlePointColor – 单个点的颜色,即未配对的特征点,若matchColor==Scalar::all(-1),颜色随机.
-
matchesMask – Mask决定哪些点将被画出,若为空,则画出所有匹配点.
-
flags – Fdefined by DrawMatchesFlags.
实现
自给自足,丰衣足食。
def drawMatches(img1, kp1, img2, kp2, matches):
"""
My own implementation of cv2.drawMatches as OpenCV 2.4.9
does not have this function available but it's supported in
OpenCV 3.0.0
This function takes in two images with their associated
keypoints, as well as a list of DMatch data structure (matches)
that contains which keypoints matched in which images.
An image will be produced where a montage is shown with
the first image followed by the second image beside it.
Keypoints are delineated with circles, while lines are connected
between matching keypoints.
img1,img2 - Grayscale images
kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
detection algorithms
matches - A list of matches of corresponding keypoints through any
OpenCV keypoint matching algorithm
"""
# Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')
# Place the first image to the left
out[:rows1, :cols1] = np.dstack([img1])
# Place the next image to the right of it
out[:rows2, cols1:] = np.dstack([img2])
# For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches:
# Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx
# x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt
# Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)
# Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)
# Show the image
# cv2.imshow('Matched Features', out)
# cv2.waitKey(0)
# cv2.destroyWindow('Matched Features')
# Also return the image if you'd like a copy
return out
测试
# -*- coding: utf-8 -*-
import cv2
import numpy as np
img1 = cv2.imread('static/images/1a.jpg',cv2.IMREAD_COLOR)
img2 = cv2.imread('static/images/1b.jpg',cv2.IMREAD_COLOR)
# img1 = cv2.resize(img1, (256, 256))
# img2 = cv2.resize(img2, (256, 256))
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
#SIFT
detector = cv2.SIFT()
# 特征点集
keypoints1 = detector.detect(gray1, None)
keypoints2 = detector.detect(gray2, None)
outimg1 = cv2.drawKeypoints(gray1, keypoints1)
outimg2 = cv2.drawKeypoints(gray2, keypoints2)
cv2.imshow('img1', outimg1)
cv2.imshow('img2', outimg2)
# kp,des = sift.compute(gray,kp)
kp1, des1 = detector.compute(gray1, keypoints1)
kp2, des2 = detector.compute(gray2, keypoints2)
# 定义一个burte force matcher对象
matcher = cv2.BFMatcher()
matches = matcher.match(des1, des2)
matches = sorted(matches, key = lambda x:x.distance)
end_img = drawMatches(img1, kp1, img2, kp2, matches[:30])
cv2.imshow('end_img', end_img)
cv2.waitKey(0)
cv2.destroyAllWindows()