关于opencv2和3在图像特征识别的区别。

转https://www.hongweipeng.com/index.php/archives/709/

1.opencv3并不自带sift,fast等,需要额外安装。

2.cv2.drawMatches这个函数在OpenCV 2.4.12中不存在。3.0以后才提供。所以运行时得到这样的报错。

函数原型如下:

cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches1to2[, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]]) → outImg
  • img1 – 源图像1

  • keypoints1 –源图像1的特征点.

  • img2 – 源图像2.

  • keypoints2 – 源图像2的特征点

  • matches1to2 – 源图像1的特征点匹配源图像2的特征点[matches[i]] DMatch.

  • outImg – 输出图像具体由flags决定.

  • matchColor – 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机.

  • singlePointColor – 单个点的颜色,即未配对的特征点,若matchColor==Scalar::all(-1),颜色随机.

  • matchesMask – Mask决定哪些点将被画出,若为空,则画出所有匹配点.

  • flags – Fdefined by DrawMatchesFlags.

实现

自给自足,丰衣足食。

def drawMatches(img1, kp1, img2, kp2, matches):
    """
    My own implementation of cv2.drawMatches as OpenCV 2.4.9
    does not have this function available but it's supported in
    OpenCV 3.0.0

    This function takes in two images with their associated
    keypoints, as well as a list of DMatch data structure (matches)
    that contains which keypoints matched in which images.

    An image will be produced where a montage is shown with
    the first image followed by the second image beside it.

    Keypoints are delineated with circles, while lines are connected
    between matching keypoints.

    img1,img2 - Grayscale images
    kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
              detection algorithms
    matches - A list of matches of corresponding keypoints through any
              OpenCV keypoint matching algorithm
    """

    # Create a new output image that concatenates the two images together
    # (a.k.a) a montage
    rows1 = img1.shape[0]
    cols1 = img1.shape[1]
    rows2 = img2.shape[0]
    cols2 = img2.shape[1]

    out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')

    # Place the first image to the left
    out[:rows1, :cols1] = np.dstack([img1])

    # Place the next image to the right of it
    out[:rows2, cols1:] = np.dstack([img2])

    # For each pair of points we have between both images
    # draw circles, then connect a line between them
    for mat in matches:

        # Get the matching keypoints for each of the images
        img1_idx = mat.queryIdx
        img2_idx = mat.trainIdx

        # x - columns
        # y - rows
        (x1,y1) = kp1[img1_idx].pt
        (x2,y2) = kp2[img2_idx].pt

        # Draw a small circle at both co-ordinates
        # radius 4
        # colour blue
        # thickness = 1
        cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
        cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)

        # Draw a line in between the two points
        # thickness = 1
        # colour blue
        cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)


    # Show the image
    # cv2.imshow('Matched Features', out)
    # cv2.waitKey(0)
    # cv2.destroyWindow('Matched Features')

    # Also return the image if you'd like a copy
    return out

测试

# -*- coding: utf-8 -*-
import cv2
import numpy as np

img1 = cv2.imread('static/images/1a.jpg',cv2.IMREAD_COLOR)
img2 = cv2.imread('static/images/1b.jpg',cv2.IMREAD_COLOR)

# img1 = cv2.resize(img1, (256, 256))
# img2 = cv2.resize(img2, (256, 256))

gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

#SIFT
detector = cv2.SIFT()

# 特征点集
keypoints1 = detector.detect(gray1, None)
keypoints2 = detector.detect(gray2, None)

outimg1 = cv2.drawKeypoints(gray1, keypoints1)
outimg2 = cv2.drawKeypoints(gray2, keypoints2)


cv2.imshow('img1', outimg1)
cv2.imshow('img2', outimg2)

# kp,des = sift.compute(gray,kp)
kp1, des1 = detector.compute(gray1, keypoints1)
kp2, des2 = detector.compute(gray2, keypoints2)


# 定义一个burte force matcher对象
matcher = cv2.BFMatcher()

matches = matcher.match(des1, des2)
matches = sorted(matches, key = lambda x:x.distance)

end_img = drawMatches(img1, kp1, img2, kp2, matches[:30])
cv2.imshow('end_img', end_img)

cv2.waitKey(0)
cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值