自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 plugin requires missing class loader for ‘Python‘

plugin requires missing class loader for 'Python'原由解决原由linux上删除原有pycharm,重新安装tar.zip,运行bin目录下pycharm.sh后报错解决原因是在删除pycharm时有残留的文件。删除 ~/.local/share/JetBrains 和 ~/.cache/JetBrains 这两个文件夹之后,重新运行pycharm.sh就ok了。...

2021-06-24 22:55:07 186 2

原创 centos7安装mplayer+smplayer

centos7安装mplayer+smplayer升级gcc安装mplayer安装smplayer参考文献:centos升级gcc到6.3.0——源码编译安装GMP,MPFR,MPC和GCCMPlayer-The Movie Playercentos7上安装smplayer播放器升级gcc系统自带gcc的版本是4.8,直接通过yum升级会报错。参考:centos升级gcc到6.3.0——源码编译安装GMP,MPFR,MPC和GCCconfigure: error: Building GCC

2020-11-05 10:23:18 448

原创 File “D:\Anaconda3\envs\loushi\lib\ntpath.py“, line 85, in join result_path = result_path + p_pa

File "D:\Anaconda3\envs\loushi\lib\ntpath.py", line 85, in join result_path = result_path + p_pa报错原因解决报错原因pip安装Python包会加载目录包含中文字符,ascii不能编码解决python 对应环境下 \Lib\site-packages 建一个文件sitecustomize.py,内容如下:import sys sys.setdefaultencoding('gbk') 重启环

2020-10-29 16:45:54 1109 1

原创 error: Microsoft Visual C++ 9.0 is required. Get it from http://aka.ms/vcpython27

error: Microsoft Visual C++ 9.0 is required. Get it from http://aka.ms/vcpython27解决办法:解决办法:下载 VCForPython27.msi 并安装,重启环境使用pip。地址: http://www.microsoft.com/en-us/download/confirmation.aspx?id=44266

2020-10-29 16:39:30 321

原创 fatal: unable to access ‘https://github.com/golang/tools.git/‘: Encountered end of file

fatal: unable to access 'https://github.com/golang/tools.git/': Encountered end of file解决解决 git config --global --unset https.proxy

2020-10-22 16:48:05 8052 5

原创 Windows增加C盘容量

Windows增加C盘容量利用win7自带diskpart,在不损坏C盘的前提下对其进行拓展参考资料:http://ask.zol.com.cn/x/3101543.html利用win7自带diskpart,在不损坏C盘的前提下对其进行拓展第一步:将C盘顺序下一个盘的资料备份(一般是D盘),然后将卷D删除。注:不能删除的一般都是磁盘里有系统缓存文件,检查一下。之后,获得一个未分配的空间,是绿色的标识。第二步:徽标键加R,启动运行,输入diskpart。之后就自动启动一个命令行,在里面输入 【

2020-09-14 16:21:05 336

原创 “cluster_block_exception“,“reason“:“blocked by: [FORBIDDEN/12/index read-only /

"cluster_block_exception","reason":"blocked by: [FORBIDDEN/12/index read-only /问题问题用es搭建的代理服务器,代理ip存不进去,后来发现是es数据库在你的磁盘使用达到95%以后,会自动把索引设定为只读与删除。...

2020-09-10 19:58:40 611

原创 安装centos7:please update microcode to vertion :0x22(or later)

please update microcode to vertion :0x22问题解决参考文献:https://blog.csdn.net/sonoface/article/details/84980738问题利用软碟通烧录的系统U盘安装centos7的时候出现固件错误,提示更新微指令。解决点此下载win32diskimager利用上述软件进行烧录,再进行安装的时候,虽然一开始仍会跳出firmware的问题,但是能够正常安装。...

2020-09-10 19:47:09 2961

原创 remote: error: insufficient permission for adding an object to repository database ./objects

remote: error: insufficient permission for adding an object to repository database ./objects往自建的git服务器push的时候报错往自建的git服务器push的时候报错在往自建的git服务器push的时候报了如下错误:原因是放在git服务器上的空仓库的所有者不是git用户。在服务器上查看仓库所有者(命令ls -la):其中两个git仓库的所有者是root,需要修改。sudo chown -R git:

2020-09-07 10:51:45 1078

原创 [AI 笔记] GAN

[AI 笔记] GANGANMinimax objective functionTrain参考资料:CS231nGAN论文GANGAN 分为两个部分,一个生成器网络,一个判别器网络。如下图所示。生成器通过学习 random noise z 到 真实图片的分布,生成与真实图片近似的图片。判别器通过判别网络,来区分 real images 和 fake images。原文:“In the proposed adversarial nets framework, the generative mo

2020-06-11 17:45:23 321

原创 [AI 笔记] Optimization参数优化

[AI 笔记] Optimization参数优化SGD的问题SGD + MomentumAdaGradRMSPropAdam总结参考资料:CS231nSGD的问题现在假设对2维的参数空间进行优化,如下图:其中最红的地方代表最小值点,即优化目标。对于SGD而言,就是简单地计算梯度,然后把负梯度乘以一定的学习率后加在权重上对其更新。按照SGD的更新策略,其从初始位置到达最优点的路径应该如下图所示,是之字形的路线。显然效率不高。另外,如果在参数空间中遇到极小值点,或者鞍点(saddle poi

2020-06-10 10:30:31 616

原创 [AI 笔记] Batch Normalization批量归一化

[AI 笔记] BatchNormalization批量归一化Batch Normalization参考资料:CS231nBatch Normalization批量归一化(Batch Normalization),用于对神经元的输入进行归一化处理,使其符合高斯分布(不一定),解决饱和问题带来的梯度消失问题。它一般被放置在全连接层或者卷积层之后,激活函数之前。如下图所示。其中右下角的公式即对输入进行高斯归一化处理。E为均值,Var为方差。但有时候我们不知道到底是否需要对输入进行批量归一化处理,有

2020-06-09 11:44:20 319

原创 [AI 笔记] 激活函数

[AI 笔记] 激活函数神经元Sigmoid参考资料:CS231n课程神经元下图是神经网络中的单个神经元。它有输入、权值、线性函数,以及一个激活函数 f。神经元的输入通过线性函数得到一个值,再通过激活函数产生输出。激活函数可以理解为为神经网络引入了非线性。SigmoidSigmoid函数是较老的激活函数,形如下图。由于它在负值区的远处趋近于 0,在正值区的远处趋近于 1。所以它在这两个地方的本地梯度为0,根据链式法则,它往回传的梯度都为零,所以梯度流中断了,即梯度消失,这两个地方称作饱

2020-06-05 21:45:25 204

原创 [AI 笔记] BP反向传播算法

[AI 笔记] BP算法说明BP算法链式法则计算图简单例子深入理解函数结构例子各种门多元链式法则向量化BP算法参考资料:CS231n课程说明BP(Back Propagation)算法,也就是反向传播算法,是神经网络训练的核心算法,用来计算各个节点的梯度。我一开始看的是西瓜书里边的推导,比较难懂,而且停留在理论推导,没有讲算法实现原理。CS231n讲的比较清楚。要理解BP算法,首先要知道链式法则,以及计算图的概念。在接下来的阅读中,请抱着以下三点来进行:化繁为简结合计算图,抽象地去理解BP算

2020-06-05 00:21:29 563

原创 [AI 笔记] SGD

[AI 笔记] SGDStochastic Gradient DescentStochastic Gradient Descent随机梯度下降。前面通过SVM、Softmax等算法计算了损失,训练损失是对所有样本的损失的累加。如下图所示:在计算完损失之后,再求它对权重W的梯度,从而利用梯度下降算法来更新权值,达到训练的目的。但是当数据集特别大的时候,这种算法的计算量无疑相当大,因为每次更新权重,都要计算所有样本的损失,及其梯度。SGD 就是为了解决这一问题产生的。SGD 每一次迭代,随机选取

2020-05-29 22:24:23 250

原创 [AI 笔记] Softmax

[AI 笔记] SoftmaxSoftmax代码实现参考:CS231n课程SoftmaxSoftmax,亦称Multinomial Logistic Regression,与SVM一样,用于计算分类损失。Softmax可以理解为将线性分类中,线性函数的得分归一化成概率,而后依据概率计算损失,同时在分类时,分类结果为概率最高的类别。其公式如下图所示:其中 s 即为线性函数的得分,其下标指代某一类别;P 为当样本为 xi 时,将其分类为 k 的概率,P 右边的式子即为归一化函数,将得分归一化为概

2020-05-29 20:51:38 199

原创 jupyternotebook无法使用autopep8

jupyternotebook:name 'autopep8' is not defined说明解决说明在使用jupyternotebook过程中,在Nbextensions中勾选了autopep8,但是在notebook中点击autopep8的插件按钮,报了:name 'autopep8' is not defined的错。解决使用autopep8需要单独下载。利用pip或者conda下载即可。conda install autopep8...

2020-05-29 18:25:00 5222 1

原创 [AI 笔记] SVM

[AI 笔记] SVM线性分类SVM代码实现参考资料:CS231n线性分类线性分类简单来说就是将一个样本输入一个线性函数,输出为这个样本在各个类别上的得分,取得分高的类别作为其分类结果。如下图所示,猫为待分类的样本,f(x,W)为一个线性函数,将样本输入后就得到了它在十个类别上的得分。其中dog这一类的得分最高,为8.02分,所以分类器将这个样本分类为dog,显然分类错误了。SVM支持向量机,用来计算分类损失。其公式如图。其中 i 代表第 i 个训练样本;yi 代表这个样本的标签,即真

2020-05-29 18:12:52 290

原创 [AI 笔记] KNN

[AI 笔记] KNNK-Nearest NeighborsKNN的超参数K距离算法代码实现维度灾难参考资料:CS231n课程K-Nearest NeighborsK-最近邻分类算法。顾名思义,要对一个样本进行分类,选取样本空间中距离它最近的K个已知类别的样本,将这K个已知类别样本中占多数的类别作为分类结果。如下图所示,图中的散点是已知类别的样本。图中对应的色块是对样本空间进行分类的结果。K是KNN算法的超参数,即选取离待分类样本最近的K个已知分类样本。观察上图,当K=1的时候,绿色区域中间的

2020-05-29 16:27:15 486

原创 [AI 笔记] 超参数选择

[AI 笔记] 超参数选择一、选择在训练集上表现最好的超参二、选择在测试集上表现最好的超参三、选择在验证集上表现最好的超参交叉验证参考资料:CS231n课程一、选择在训练集上表现最好的超参这种方式是不可取的,这样的超参只是很好地拟合训练集,但是不能表现很好的泛化能力。二、选择在测试集上表现最好的超参这种方式也不可取,这里比较容易混淆。如果只把数据集分成训练集和测试集,并在测试集上选用表现最好的超参。只能表明所选的超参在测试集上的泛化能力比较好,不能说明在未知的数据上表现地如何,即不能体现真正的

2020-05-29 00:07:30 572

原创 [AI 笔记] Numpy

[AI 笔记] Numpy数组arrays创建数组方法访问数组整型数组访问布尔型数组访问数据类型数组计算sum函数T转置广播Broadcasting参考资料:CS231n课程笔记翻译:Python Numpy教程数组arrays每个Numpy数组都是数据类型相同的元素组成的网格import numpy as npa = np.array([[1,2,3],[4,5,6]])print(type(a))print(a.shape) print(a)print(a[0])

2020-05-28 21:48:15 199

原创 jupyter notebook没有Nbextensions一栏

jupyter notebook不显示Nbextensions一栏说明说明在我们安装jupyternotebook的时候会遇到这个问题,另一个Nbextensions一栏

2020-05-19 11:28:33 15415 6

原创 jupyter nbextensions configurator不显示插件

jupyter nbextensions configurator不显示插件说明解决说明参考资料:爬坑记录–jupyter nbextensions不显示拓展今天装jupyternotebook插件。在Jupyter-contrib/jupyter_nbextensions_configurator的Install栏目看了安装方法。因为我用的conda(也有pip的方法),所以只需要在命令行输入以下命令:conda install -c conda-forge jupyter_nbextensio

2020-05-19 11:09:50 15352 6

原创 selenium.common.exceptions.WebDriverException错误解决

selenium.common.exceptions.WebDriverException错误解决参考资料说明解决讨论参考资料https://blog.csdn.net/mango_ZZY/article/details/105138176https://selenium-python.readthedocs.io/installation.html#drivers说明今天在python3.7环境下用snapshot_selenium渲染pyecharts的图片,报了以下错:selenium.c

2020-05-13 00:44:24 2743

原创 jupyter notebook增加或删除kernel

jupyter notebook增加或删除kernel增加kernel删除kernel今天用jupyternotebook来学习github上的一个项目,发现运行时报ModuleNotFoundError的错。检查了一下发现问题应该处在notebook的kernel上。因为我在电脑上装了不同的python环境,所以想要用特定的包就需要切换python环境。这里通过kernel实现。增加kernel第一步:打开cmd,进入想要使用的python环境下。在该环境下利用pip安装ipykernel。(p

2020-05-10 12:08:45 996

原创 更改jupyter notebook/lab的工作路径以及默认浏览器

更改jupyter notebook/lab的工作路径以及默认浏览器更改jupyter notebook/lab的工作路径更改jupyter notebook/lab的默认浏览器插一句:创建jupyterlab的快捷方式今天装了anaconda3,准备使用jupyter notebook做接下来的工作。但是从开始菜单启动jupyter notebook后,只弹出了一个命令框,告诉你打开notebook的网址,需要手动在浏览器中输入网址才能真正打开notebook。网上查了一下资料,发现为了更好地使用no

2020-05-10 00:53:59 3129 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除