查找------折半查找(二分查找)

目录

折半查找算法原理

折半查找的步骤

折半查找的时间复杂度

折半查找的空间复杂度

例题演示:

题目描述

具体代码:


折半查找算法原理

折半查找(也称为二分查找)是一种在有序数组中查找特定元素的搜索算法。它的基本思想是将搜索区间不断分成两半,每次比较中间元素与目标值,然后根据比较结果排除一半的搜索区间,直到找到目标值或者搜索区间为空。

折半查找的步骤

  1. 确定搜索区间的初始边界,通常是数组的起始和结束下标。
  2. 计算搜索区间中间位置的索引 mid = (low + high) / 2
  3. 比较中间元素 arr[mid] 与目标值 key
    • 如果 arr[mid] 等于 key,则找到目标值,返回中间元素的索引。
    • 如果 arr[mid] 大于 key,则目标值可能在左半区间,更新 high = mid - 1
    • 如果 arr[mid] 小于 key,则目标值可能在右半区间,更新 low = mid + 1
  4. 重复步骤2和3,直到 low 大于或等于 high,如果在此之前找到了目标值,则返回相应的索引;如果搜索区间为空,则返回一个表示未找到的特殊值(通常是-1)。

折半查找的时间复杂度

折半查找的时间复杂度为O(log n),这意味着在最坏的情况下,查找操作的比较次数与数组长度的对数成正比。这使得折半查找在处理大量数据时非常高效。

折半查找的空间复杂度

折半查找的空间复杂度为O(1),因为它不需要额外的存储空间,只使用几个变量来存储搜索区间的边界和中间位置的索引。

折半查找算法是一种经典的高效搜索算法,广泛应用于已排序数据的查找场景. 

例题演示:

题目描述


现有一个按非递减顺序排列,且不包含重复数字的整型数组 nums 和一个目标值 target ,请用二分法查找出数组中等于target 的元素,并返回它的下标 i (数组下标从 0 开始)否则返回 -1。

输入输出格式
输入格式
第一行输入一个整数 numsSize;
第二行输入一个数组 nums ;
第三行输入一个整数 target。
输出格式
输出一个整数。

输入输出样例1
输入
4
0 1 2 3
2
输出
2

输入输出样例2
输入
5
2 4 6 7 8
6
输出
2

具体代码:

#include<stdio.h>
int main(void)
{
	int n;
	int arr[100] = { 0 };
	int target;
    scanf("%d",&n);
	for (int i = 0; i < n; i++)
		scanf("%d", &arr[i]);
	scanf("%d", &target);
	int front = 0;
	int rear = n - 1;
	int middle;
	int flag = 0;
	while (front <= rear)
	{
		middle = (front + rear) / 2;
		if (arr[middle] == target)
		{
			flag = 1;
			break;
		}
		else if(arr[middle] > target)
		{
			rear = middle - 1;
			middle = (front + rear) / 2;
		}
		else if (arr[middle] < target)
		{
			front = middle + 1;
			middle = (front + rear) / 2;
		}
	}
	if (flag)
		printf("%d", middle);
	else
		printf("-1");

	return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值