原题:You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
思路:这是一道二分查找的简单题。由于上周写了个二分查找的变种写的不是很顺,所以这周专门找了一道二分查找的题来做做。这题要特别注意如果直接用int会有溢出的问题。
代码如下:
class Solution {
public:
int arrangeCoins(int n) {
long long high=n,low=0,mid,result;
while(low<=high){
mid=(high-low)/2+low;
result=(mid+1)*mid/2;
if(result>n){
high=mid-1;
}else if(result<n){
low=mid+1;
}else{
return mid;
}
}
return high;
}
};