第十周:( Sicily1091) Maximum Sum(c++)

题目链接:http://soj.sysu.edu.cn/1091

思路:这是一道关于求和最大的相连子序列的题。用dp[i]表示以a[i]为结尾的和最大的相连子序列,此问题的状态转移方程为:dp[i]=max(a[i],dp[i-1]+a[i]),结果为max(dp[1],dp[2]…,dp[n])。本题相当于把数组分成两段,求(这两段的(和最大的相连子序列)的和)的最大值。由于求数组和最大的相连子序列的复杂度为o(n),容易由此想到o(n^2)的做法。当然更优的做法用max_begin[i]表示前i个数和最大的相连子序列的值,用max_end[n-1-i]表示后i个数和最大的相连子序列的值,用类似头尾指针的方法从头到尾,再从尾到头遍历一遍即可求出max_begin[i]和max_end[n-1-i]。然后再遍历一遍求max(max_begin[i]+max_end[i+1]),该算法复杂度为o(2n+n),其实也即o(n)。

代码一:复杂度o(n^2),超时!

#include <iostream>
#include <cstdio>
#define MAX -20001
using namespace std;

int maxsum(int a[],int m,int n){
    int max=MAX;
    int sum=0;
    for(int i=m;i<=n;i++){
        sum+=a[i];
        if(sum>max)
            max=sum;
        if(sum<0)
            sum=0;
    }
    return max;
}

int main(){
    int T;
    cin>>T;
    while(T>0){
        T--;
        int n;
        int max=MAX;
        cin>>n;
        int a[n+1];
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(int i=0;i<(n-1);i++){
            if(max<(maxsum(a,1,i)+maxsum(a,i+1,n-1)))
                max=maxsum(a,1,i)+maxsum(a,i+1,n-1);
        }
        cout<<max<<endl;
    }
    return 0;
}                                 

代码二:复杂度:o(n),通过!

#include <iostream>
#include <cstdio>
#define MAX -20001
using namespace std;

int main(){
    int T;
    scanf("%d",&T);
    while(T>0){
        T--;
        int n;
        scanf("%d",&n);
        int a[n+1];
        int max=MAX;
        int max_begin[n+1],max_end[n+1];
        int max1=MAX,max2=MAX;
        int sum1=0,sum2=0;
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(int i=0;i<n;i++){
            sum1+=a[i];
            if(sum1>max1)
                max1=sum1;
            if(sum1<0)
                sum1=0;
            max_begin[i]=max1;

            sum2+=a[n-1-i];
            if(sum2>max2)
                max2=sum2;
            if(sum2<0)
                sum2=0;
            max_end[n-1-i]=max2;
        }
        for(int i=0;i<(n-1);i++){
            if(max<(max_begin[i]+max_end[i+1]))
                max=max_begin[i]+max_end[i+1];
        }
        printf("%d\n",max);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值