第十八周:( 期末机试模拟) 小黄车(c++)

该博客介绍了如何利用广度优先搜索(BFS)算法解决一个关于小黄车路径规划的问题,目标是在连续的M天内,每天从宿舍到实验室至少经过一条未走过的道路。博客提供了详细的例子和思路解析,并给出了优化后的O(n^2)复杂度的解决方案代码。
摘要由CSDN通过智能技术生成

Description
随着共享经济的兴起,大学城如今到处可见ofo小黄车. 小左现在打算每天都骑小黄车从宿舍去实验室. 假设大学城的地图可以简化为一个有向图,图中有N个地点(节点),用0到N-1进行编号,有些地点之间存在有向的道路(有向边). 小左的宿舍所在地点编号为0,实验室所在地点编号为N-1. 小左希望为连续的M天规划线路,使得每天从宿舍到图书馆,都至少会经过一条之前没有走过的道路(有向边). 小左想知道M的最大值,你能帮助他么?

请实现下面Solution类中的countPath函数,完成上述功能.
参数G: N*N(2 <= N <= 50)邻接矩阵,如果地点i到地点j之间有道路,则G[i][j] = 1;否则G[i][j] = 0. G[i][i]的值总是为0.
返回值:M的最大值. 如果不存在满足要求的路径则返回0.


class Solution {
public:
       int countPaths(vector<vector<int>> G) {

};

例1:
G = { {0, 1}, {1, 0}},返回值为2,因为第1天:0 –> 1,第2天 0 –> 1 –> 0 –> 1. 虽然小左第2天兜了一下圈,但他确实走了一条第1天没有走过的边1 –> 0.

例2:
G = { {0, 1, 1}, {1, 0, 1}, {1, 0, 0}},返回值为4.
第1天:0 –> 2
第2天:0 –> 2 –> 0 –> 2
第3天:0 –> 1 –> 2
第4天:0 –> 1 –> 0 –> 1 –> 2

例3:
G = { {0, 1, 0}, {1, 0, 0}, {0, 0, 0}},返回值为0.

注意:
1. 你只需要提交Solution类的代码,你在本地可以编写main函数测试程序&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值