Docker----安装 MySQL

Docker 安装 MySQL 方法一、通过 Dockerfile构建 创建Dockerfile 首先,创建目录mysql,用于存放后面的相关东西。 runoob@runoob:~$ mkdir -p ~/mysql/data ~/mysql/logs ~/mysql/conf...

2017-11-08 11:24:05

阅读数 313

评论数 0

Docker----制作一个带有JDK和tomcat的docker镜像

制作一个带有JDK和tomcat的docker镜像 也许你和我一样,想要自己亲手制作一个热乎乎的镜像,最好自己指定JDK版本和tomcat版本。当然,这是可以的。 根据我的水平,目前有两种办法可以制作我想要的这个镜像。来,我们先说简单点的。 方式一 首先,准备好想要的jdk和tomcat,另...

2017-11-08 11:20:10

阅读数 555

评论数 0

Docker----CentOS Docker 安装

CentOS Docker 安装 Docker支持以下的CentOS版本: CentOS 7 (64-bit) CentOS 6.5 (64-bit) 或更高的版本 前提条件 目前,CentOS 仅发行版本中的内核支持 Docker。 Docker 运行在 CentOS 7 上,要求...

2017-11-08 10:05:14

阅读数 390

评论数 0

Openstack----创建实例

原Blog:http://blog.csdn.net/yasyal515/article/details/74946977 在Openstack中实例指的就是vm,本文主讲在dashboard上创建vm的基本步骤: 在创建虚拟机之前,要做一些准备,添加安全组,创建ssh密钥对。本文...

2017-11-08 09:39:45

阅读数 577

评论数 0

OpenStack----手动安装OpenStack(分布式)

#OpenStack 手动安装手册(Icehouse) 声明:本博客欢迎转发,但请保留原作者信息! 作者:[罗勇] 云计算工程师、敏捷开发实践者 博客:http://yongluo2013.github.io/ 微博:http://weibo.com/u/1704250760/ ##部署架构 ...

2017-11-07 22:21:50

阅读数 3632

评论数 0

OpenStack----使用devstack 安装openstack(All in one)

##devstack 安装openstack devstack 主要是用于openstack 演示以及开发过程中自动化安装,通常不能直接用于生产环境部署。 ###环境准备 从之前实验中准备好的虚拟机克隆一个新的虚拟机,配置如下 Devstack VM: Name: devstack vC...

2017-11-07 22:09:10

阅读数 675

评论数 0

机器学习----训练集、验证集、测试集

最近在看机器学习的东西发现验证集的(Validation set) 有时候被提起到,以时间没明白验证集的真正用途。 首先,这三个名词在机器学习领域的文章中是很常见的,以下是这三个词的定义。  Training set: A set of examples used for learning, ...

2017-11-07 13:18:38

阅读数 607

评论数 0

深度学习----BP+SGD+激活函数+代价函数+基本问题处理思路

原Blog:http://blog.csdn.net/MyArrow/article/details/51396654?locationNum=10&fps=1 0. 学习模型评价标准     1)学习速度     2)推广能力/泛化能力/Generalize 1. 反向传播算法计...

2017-11-07 12:47:46

阅读数 2476

评论数 0

机器学习----特征工程

原Blog:http://www.cnblogs.com/jasonfreak/p/5448385.html 目录 1 特征工程是什么? 2 数据预处理   2.1 无量纲化     2.1.1 标准化     2.1.2 区间缩放法     2.1.3 标准化与归一化的区别   2.2 对定...

2017-11-06 19:35:37

阅读数 293

评论数 0

机器学习----正负样本不匹配

作者:宋天龙 链接:https://www.zhihu.com/question/27535832/answer/223882022 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 1 通过过抽样和欠抽样解决样本不均衡 抽样是解决样本分布不均衡相...

2017-11-06 19:01:41

阅读数 1501

评论数 0

机器学习----交叉验证(Cross Validation)简介

转自知乎:https://www.zhihu.com/question/23561944 交叉验证的定义 交叉验证(Cross Validation),有的时候也称作循环估计(Rotation Estimation),是一种统计学上将数据样本切割成较小子集的实用方法,该...

2017-11-06 17:10:13

阅读数 2872

评论数 0

机器学习----决策树

原Bolg:http://blog.csdn.net/zx10212029/article/details/49529843 Decision tree 决策树是机器学习中一种基本的分类和回归算法,是依托于策略抉择而建立起来的树。其主要优点是模型具有可读性,分类速度快,易于理解。决策树...

2017-11-06 16:04:57

阅读数 219

评论数 0

机器学习----从线性回归到逻辑斯特回归

原Blog:http://blog.csdn.net/zx10212029/article/details/49889319 Linear Regression 在学习李航《统计学习方法》的逻辑斯特回归时,正好coursera上相应的线性回归和逻辑斯特回归都学习完成,在此就一起进行总结,其中图...

2017-11-06 15:51:11

阅读数 287

评论数 0

量化交易----常见股票特征和编程实现

顺势指标CCI CCI中文译名为:随顺市势指标。它属于超买超卖指标中较特殊的一种。波动于广向正值无限大和微向负值无限小之间。本指标专门用以测量股价是否已超出常态分布范围 计算公式 CCI(N日)=(TP-MA)÷Std÷0.015 其中,TP=(最高价+最低价+收盘价)÷3 MA=近N日...

2017-11-04 20:40:51

阅读数 7205

评论数 0

量化交易----利用机器学习预测股票价格趋势

有了股票历史数据,如果我们决定采用机器学习的方法来制定策略算法的话,接下的步骤就是分析数据、选择特征和机器学习模型、预测结果等等。 由于股票的数据分析和特征选择比较多样化,这里我们随意选取股票前两天的价格作为输入特征,当然实际工作中的特征选取就比这要复杂的多了。 语法为Python2....

2017-11-04 15:16:56

阅读数 12165

评论数 2

量化交易----获取沪深300股票数据

主要使用tushare 库来获取import numpy as np from pandas import Series, DataFrame import pandas as pd import matplotlib.pyplot as plt from numpy.random import ...

2017-11-04 14:49:50

阅读数 4747

评论数 1

量化交易----编程实例:爬取标普500指数股票数据

编程实战:首先建立数据库用于存储数据,接着在维基百科上爬取标普500的股票代码,最后利用雅虎财经的API接口爬取股票的历史价格数据1. 建立数据库在MySql数据库上建立四个数据表 表symbol用于存储标普500的股票的描述信息 表daily_price用于存储股票的每日价格 余下的两个数...

2017-11-04 00:50:57

阅读数 3027

评论数 0

量化交易----常见收益模型:CAPM、价格套利模型

1. CAPM模型 ri(t): t时刻,股票i的收益 rm(t): t时刻,股票时常的整体收益情况 beta是权值系数,alpha是偏差系数 该模型是一个线性模型,在该模型中,某支股票的收益和大盘的首先线性相关基于该模型的几个注意事项这里有个市场有效性假说的概念。 市场有效性假说:投资...

2017-11-03 17:23:12

阅读数 3494

评论数 0

量化交易----入门认识

量化交易基本概念流程

2017-11-03 17:01:04

阅读数 962

评论数 0

opencv----人脸检测

在OpenCV中,人脸检测也是其热门应用之一。在OpenCV的特征检测专题就详细介绍了人脸检测的原理——通过Haar特征来识别是否为人脸。Haar特征检测原理与Haar特征分类器的训练放到下一篇《【OpenCV入门指南】第十四篇  Haartraining》来讲,本篇主要介绍如何在OpenCV...

2017-11-02 21:19:27

阅读数 267

评论数 0

提示
确定要删除当前文章?
取消 删除