poj 3621 Sightseeing cows

25 篇文章 0 订阅
20 篇文章 0 订阅

最优比例生成环的题。

要取一个回路上点权之和比边权之和的最大值。

我们设最后的答案为ans

ans=f[i]w[i][j]

那么-Σf[i]+ans*w[i][j]=0

我现在二分的值为k,如果k<=ans的话,这个值是<0的
所以判负环最短路。如果有环的时候那么就可以变大二分的值。即l=mid;

注意有重边.zhuW( ̄_ ̄)W

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define eps 1e-6
using namespace std;
//by mars_ch
int n,m;
int map[1005][1005];
int f[1005],inq[1005],cnt[1005];
double dis[1005];
queue<int> q;
struct data
{
    int f,t,nxt;
    double w;
}e[1000005];
int tot,first[1005];
void add(int a,int b,double c)
{
    e[tot].f=a;
    e[tot].t=b;
    e[tot].w=c;
    e[tot].nxt=first[a];
    first[a]=tot++;
}
void build(double x)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(map[i][j])
            {
                add(i,j,1.0*map[i][j]*x-1.0*f[i]);
            }
        }
    }
}
bool spfa()
{
    memset(dis,0x3f,sizeof(dis));
    memset(inq,0,sizeof(inq));
    memset(cnt,0,sizeof(cnt));
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        inq[i]=1;
        dis[i]=0;
    }
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        inq[u]=0;
        for(int i=first[u];i!=-1;i=e[i].nxt)
        {
            int t=e[i].t;
            if(dis[t]>dis[u]+e[i].w)
            {
                dis[t]=dis[u]+e[i].w;
                if(++cnt[t]>n) return true;
                if(!inq[t])
                {
                    q.push(t);
                    inq[t]=1;
                }
            }
        }
    }
    return false;
}
bool check(double x)
{
    memset(first,-1,sizeof(first));
    tot=0;
    build(x);
    return spfa();
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&f[i]); 
    }
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        map[a][b]=map[a][b]==0?c:min(map[a][b],c);
    }
    double l=0.0,r=1500.00;
    while(r-l>eps)
    {
        double mid=(l+r)/2;
        if(check(mid))
        {
            l=mid;
        }
        else r=mid;
    }
    printf("%.2lf\n",l);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值