最优比例生成环的题。
要取一个回路上点权之和比边权之和的最大值。
我们设最后的答案为ans
ans=∑f[i]∑w[i][j]
那么-Σf[i]+ans*w[i][j]=0
我现在二分的值为k,如果k<=ans的话,这个值是<0的
所以判负环最短路。如果有环的时候那么就可以变大二分的值。即l=mid;
注意有重边.zhuW( ̄_ ̄)W
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define eps 1e-6
using namespace std;
//by mars_ch
int n,m;
int map[1005][1005];
int f[1005],inq[1005],cnt[1005];
double dis[1005];
queue<int> q;
struct data
{
int f,t,nxt;
double w;
}e[1000005];
int tot,first[1005];
void add(int a,int b,double c)
{
e[tot].f=a;
e[tot].t=b;
e[tot].w=c;
e[tot].nxt=first[a];
first[a]=tot++;
}
void build(double x)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(map[i][j])
{
add(i,j,1.0*map[i][j]*x-1.0*f[i]);
}
}
}
}
bool spfa()
{
memset(dis,0x3f,sizeof(dis));
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=n;i++)
{
q.push(i);
inq[i]=1;
dis[i]=0;
}
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=0;
for(int i=first[u];i!=-1;i=e[i].nxt)
{
int t=e[i].t;
if(dis[t]>dis[u]+e[i].w)
{
dis[t]=dis[u]+e[i].w;
if(++cnt[t]>n) return true;
if(!inq[t])
{
q.push(t);
inq[t]=1;
}
}
}
}
return false;
}
bool check(double x)
{
memset(first,-1,sizeof(first));
tot=0;
build(x);
return spfa();
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&f[i]);
}
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
map[a][b]=map[a][b]==0?c:min(map[a][b],c);
}
double l=0.0,r=1500.00;
while(r-l>eps)
{
double mid=(l+r)/2;
if(check(mid))
{
l=mid;
}
else r=mid;
}
printf("%.2lf\n",l);
return 0;
}