Description
Farmer John 有太多的工作要做啊!!!!!!!!为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间。 他的工作日从0时刻开始,有1000000000个单位时间(!)。在任一时刻,他都可以选择编号1~N的N(1 <= N <= 100000)项工作中的任意一项工作来完成。 因为他在每个单位时间里只能做一个工作,而每项工作又有一个截止日期,所以他很难有时间完成所有N个工作,虽然还是有可能。 对于第i个工作,有一个截止时间D_i(1 <= D_i <= 1000000000),如果他可以完成这个工作,那么他可以获利P_i( 1<=P_i<=1000000000 ). 在给定的工作利润和截止时间下,FJ能够获得的利润最大为多少呢?答案可能会超过32位整型。
Input
第1行:一个整数N. 第2~N+1行:第i+1行有两个用空格分开的整数:D_i和P_i.
Output
输出一行,里面有一个整数,表示最大获利值。
Sample Input
3
2 10
1 5
1 7
Sample Output
17
题解:
看到题就是贪心吗。
但是一开始想的有问题。。。。以为只能在这个时候工作然后就错了。。。。
所以 我们每个时间 都要工作是最好的
那就按截止时间排个序,然后 一直保持 堆是满的也就是 我们只要碰见了 时间超出的 就比较一下 小根堆(维护的利益)的堆顶 就ok了
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define int long long
using namespace std;
//by mars_ch
int n;
struct data
{
int p,d;
}c[100005];
bool cmp(data a,data b)
{
return a.d<b.d;
}
priority_queue<int,vector<int>,greater<int> > pq;
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld %lld",&c[i].d,&c[i].p);
}
sort(c+1,c+n+1,cmp);
int now=1,ans=0;
for(int i=1;i<=n;i++)
{
if(c[i].d>=now)
{
ans+=c[i].p;
pq.push(c[i].p);
}
else
{
int t=pq.top();
if(c[i].p>t)
{
pq.pop();
ans-=t;
pq.push(c[i].p);
ans+=c[i].p;
}
now--;
}
now++;
}
printf("%lld\n",ans);
}